This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280583 #19 Jun 25 2022 21:54:28 %S A280583 1,2,2,3,2,8,2,8,3,8,2,36,2,8,8,5,2,36,2,36,8,8,2,64,3,8,8,36,2,64,2, %T A280583 36,8,8,8,27,2,8,8,64,2,64,2,36,36,8,2,100,3,36,8,36,2,64,8,64,8,8,2, %U A280583 1728,2,8,36,7,8,64,2,36,8,64,2,1728,2,8,36,36,8 %N A280583 a(n) = product of divisors of the number of divisors of n. %H A280583 Antti Karttunen, <a href="/A280583/b280583.txt">Table of n, a(n) for n = 1..10000</a> %F A280583 a(n) = A007955(A000005(n)). %F A280583 a(p) = 2 for p = primes (A000040). %F A280583 a(n) = 3 for squares of primes (A001248). %e A280583 For n = 6; a(n) = product of divisors (tau(6)) = 1*2*4 = 8. %t A280583 Table[Times@@Divisors[DivisorSigma[0,n]],{n,80}] (* _Harvey P. Dale_, Dec 04 2021 *) %o A280583 (Magma) [&*[d: d in Divisors(#[d: d in Divisors(n)])]: n in [1..100]] %o A280583 (Python) %o A280583 from math import isqrt %o A280583 from sympy import divisor_count %o A280583 def A280583(n): return (lambda m:(isqrt(m) if (c:=divisor_count(m)) & 1 else 1)*m**(c//2))(divisor_count(n)) # _Chai Wah Wu_, Jun 25 2022 %Y A280583 Cf. A000005, A000040, A001248, A007955, A010553, A062069. %K A280583 nonn %O A280583 1,2 %A A280583 _Jaroslav Krizek_, Jan 07 2017