cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210000 Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.

Original entry on oeis.org

0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

a(n) is the number of 2 X 2 matrices having all terms in {0,1,...,n} and inverses with all terms integers.
Most sequences in the following guide count 2 X 2 matrices having all terms contained in the domain shown in column 2 and determinant d or permanent p or sum s of terms as indicated in column 3.
A059306 ... {0,1,...,n} ..... d=0
A171503 ... {0,1,...,n} ..... d=1
A210000 ... {0,1,...,n} .... |d|=1
A209973 ... {0,1,...,n} ..... d=2
A209975 ... {0,1,...,n} ..... d=3
A209976 ... {0,1,...,n} ..... d=4
A209977 ... {0,1,...,n} ..... d=5
A210282 ... {0,1,...,n} ..... d=n
A210283 ... {0,1,...,n} ..... d=n-1
A210284 ... {0,1,...,n} ..... d=n+1
A210285 ... {0,1,...,n} ..... d=floor(n/2)
A210286 ... {0,1,...,n} ..... d=trace
A280588 ... {0,1,...,n} ..... d=s
A106634 ... {0,1,...,n} ..... p=n
A210288 ... {0,1,...,n} ..... p=trace
A210289 ... {0,1,...,n} ..... p=(trace)^2
A280934 ... {0,1,...,n} ..... p=s
A210290 ... {0,1,...,n} ..... d>=0
A183761 ... {0,1,...,n} ..... d>0
A210291 ... {0,1,...,n} ..... d>n
A210366 ... {0,1,...,n} ..... d>=n
A210367 ... {0,1,...,n} ..... d>=2n
A210368 ... {0,1,...,n} ..... d>=3n
A210369 ... {0,1,...,n} ..... d is even
A210370 ... {0,1,...,n} ..... d is odd
A210371 ... {0,1,...,n} ..... d is even and >=0
A210372 ... {0,1,...,n} ..... d is even and >0
A210373 ... {0,1,...,n} ..... d is odd and >0
A210374 ... {0,1,...,n} ..... s=n+2
A210375 ... {0,1,...,n} ..... s=n+3
A210376 ... {0,1,...,n} ..... s=n+4
A210377 ... {0,1,...,n} ..... s=n+5
A210378 ... {0,1,...,n} ..... t is even
A210379 ... {0,1,...,n} ..... t is odd
A211031 ... {0,1,...,n} ..... d is in [-n,n]
A211032 ... {0,1,...,n} ..... d is in (-n,n)
A211033 ... {0,1,...,n} ..... d=0 (mod 3)
A211034 ... {0,1,...,n} ..... d=1 (mod 3)
A134506 ... {1,2,...,n} ..... d=0
A196227 ... {1,2,...,n} ..... d=1
A209979 ... {1,2,...,n} .... |d|=1
A197168 ... {1,2,...,n} ..... d=2
A210001 ... {1,2,...,n} ..... d=3
A210002 ... {1,2,...,n} ..... d=4
A210027 ... {1,2,...,n} ..... d=5
A211053 ... {1,2,...,n} ..... d=n
A211054 ... {1,2,...,n} ..... d=n-1
A211055 ... {1,2,...,n} ..... d=n+1
A055507 ... {1,2,...,n} ..... p=n
A211057 ... {1,2,...,n} ..... d is in [0,n]
A211058 ... {1,2,...,n} ..... d>=0
A211059 ... {1,2,...,n} ..... d>0
A211060 ... {1,2,...,n} ..... d>n
A211061 ... {1,2,...,n} ..... d>=n
A211062 ... {1,2,...,n} ..... d>=2n
A211063 ... {1,2,...,n} ..... d>=3n
A211064 ... {1,2,...,n} ..... d is even
A211065 ... {1,2,...,n} ..... d is odd
A211066 ... {1,2,...,n} ..... d is even and >=0
A211067 ... {1,2,...,n} ..... d is even and >0
A211068 ... {1,2,...,n} ..... d is odd and >0
A209981 ... {-n,....,n} ..... d=0
A209982 ... {-n,....,n} ..... d=1
A209984 ... {-n,....,n} ..... d=2
A209986 ... {-n,....,n} ..... d=3
A209988 ... {-n,....,n} ..... d=4
A209990 ... {-n,....,n} ..... d=5
A211140 ... {-n,....,n} ..... d=n
A211141 ... {-n,....,n} ..... d=n-1
A211142 ... {-n,....,n} ..... d=n+1
A211143 ... {-n,....,n} ..... d=n^2
A211140 ... {-n,....,n} ..... p=n
A211145 ... {-n,....,n} ..... p=trace
A211146 ... {-n,....,n} ..... d in [0,n]
A211147 ... {-n,....,n} ..... d>=0
A211148 ... {-n,....,n} ..... d>0
A211149 ... {-n,....,n} ..... d<0 or d>0
A211150 ... {-n,....,n} ..... d>n
A211151 ... {-n,....,n} ..... d>=n
A211152 ... {-n,....,n} ..... d>=2n
A211153 ... {-n,....,n} ..... d>=3n
A211154 ... {-n,....,n} ..... d is even
A211155 ... {-n,....,n} ..... d is odd
A211156 ... {-n,....,n} ..... d is even and >=0
A211157 ... {-n,....,n} ..... d is even and >0
A211158 ... {-n,....,n} ..... d is odd and >0

Examples

			a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
		

Crossrefs

Cf. A171503.
See also the very useful list of cross-references in the Comments section.

Programs

  • Mathematica
    a = 0; b = n; z1 = 50;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 0, z1}]  (* A059306 *)
    Table[c[n, 1], {n, 0, z1}]  (* A171503 *)
    2 %                         (* A210000 *)
    Table[c[n, 2], {n, 0, z1}]  (* A209973 *)
    %/4                         (* A209974 *)
    Table[c[n, 3], {n, 0, z1}]  (* A209975 *)
    Table[c[n, 4], {n, 0, z1}]  (* A209976 *)
    Table[c[n, 5], {n, 0, z1}]  (* A209977 *)

Formula

a(n) = 2*A171503(n).

Extensions

A209982 added to list in comment by Chai Wah Wu, Nov 27 2016

A280934 Number of 2 X 2 matrices with all elements in {0,..,n} and (sum of terms) = permanent.

Original entry on oeis.org

1, 1, 4, 36, 52, 76, 92, 116, 136, 160, 176, 208, 224, 248, 272, 300, 316, 348, 364, 396, 420, 444, 460, 500, 520, 544, 568, 600, 616, 656, 672, 704, 728, 752, 776, 820, 836, 860, 884, 924, 940, 980, 996, 1028, 1060, 1084, 1100, 1148, 1168, 1200, 1224, 1256, 1272, 1312, 1336, 1376, 1400, 1424, 1440, 1496, 1512, 1536
Offset: 0

Views

Author

Indranil Ghosh, Jan 11 2017

Keywords

Comments

a(n) mod 4 = 0 for n > 1.
a(n) is also the number of 2 X 2 matrices with all elements in {-1,..,n-1} and permanent = 2. - Chai Wah Wu, Jan 11 2017

Examples

			For n = 3, the possible matrices are [0,0,0,0], [0,2,2,0], [0,2,3,1],[0,3,2,1], [0,3,3,3], [1,2,3,0], [1,2,3,1], [1,2,3,2], [1,2,3,3], [1,3,2,0], [1,3,2,1], [1,3,2,2], [1,3,2,3], [2,0,0,2], [2,0,1,3], [2,1,0,3], [2,1,1,3], [2,1,2,3], [2,1,3,3], [2,2,1,3], [2,2,2,2], [2,2,3,1], [2,3,1,3], [2,3,2,1], [3,0,1,2], [3,0,3,3], [3,1,0,2], [3,1,1,2], [3,1,2,2], [3,1,3,2], [3,2,1,2], [3,2,3,1], [3,3,0,3], [3,3,1,2], [3,3,2,1] and [3,3,3,0]. There are 36 possibilities.
Here each of the matrices is defined as M = [a,b,c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, for n = 3, a(n) = 36.
		

Crossrefs

Programs

  • Python
    def t(n):
        s=0
        for a in range(n+1):
            for b in range(n+1):
                for c in range(n+1):
                    for d in range(n+1):
                        if (a+b+c+d)==(a*d+b*c):
                            s+=1
        return s
    for i in range(201):
        print(str(i)+" "+str(t(i)))
    
  • Python
    from sympy import divisor_count
    A280934_list = [1,1,4,36]
    for i in range(4,100):
        A280934_list.append(A280934_list[-1]+4*divisor_count(i+1)+8) # Chai Wah Wu, Jan 11 2017

Formula

a(n) = a(n-1) + 4*A000005(n+1) + 8 for n > 3. - Chai Wah Wu, Jan 11 2017

A281194 Number of 2 X 2 matrices with all terms in {-n,..,0,..,n} and (sum of terms) = determinant.

Original entry on oeis.org

1, 31, 111, 271, 479, 831, 1167, 1711, 2239, 2975, 3631, 4687, 5407, 6655, 7759, 9135, 10367, 12127, 13231, 15375, 16991, 19135, 20879, 23471, 25215, 27999, 30319, 33167, 35359, 39167, 41039, 44975, 47615, 50975, 54511, 58767, 61791, 66239, 69391
Offset: 0

Views

Author

Indranil Ghosh, Jan 17 2017

Keywords

Examples

			For n = 3, few of the possible matrices are [-3,-3,-3,0], [-3,-3,-1,1], [-3,-3,1,2], [-3,-3,3,3], [-3,-2,-1,1], [-3,-2,3,2], [-3,-1,-3,1], [-3,-1,-2,1], [-3,-1,-1,1], [-3,-1,0,1], [-3,-1,1,1], [-3,-1,2,1], [-3,-1,3,1], [-3,0,-1,1], [2,0,0,2], [2,0,1,3], [2,1,-3,-3], [2,1,-2,-1], [2,1,-1,1], [3,3,0,3],...There are 271 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So, a(3) = 271.
		

Crossrefs

Programs

  • PARI
    a(n)=sum(a=-n,n, sum(d=-n,n, my(t=a*d+a+d); sum(b=-n,n, if(b==-1, if(t==-1, 2*n+1, 0), my(c=(t-b)/(b+1)); denominator(c)==1 && c<=n && c>=-n)))) \\ Charles R Greathouse IV, Jan 17 2017
  • Python
    def t(n):
        s=0
        for a in range(-n, n+1):
            for b in range(-n, n+1):
                for c in range(-n, n+1):
                    for d in range(-n, n+1):
                        if (a+b+c+d)==(a*d-b*c):
                            s+=1
        return s
    for i in range(0, 187):
        print(f"{i} {t(i)}")
    

A280914 Number of 2 X 2 matrices with all terms in {-n,...,0,...,n} and (sum of terms) = permanent.

Original entry on oeis.org

1, 21, 52, 172, 268, 428, 588, 812, 1004, 1324, 1580, 1900, 2252, 2668, 2988, 3532, 3916, 4460, 5004, 5548, 6028, 6764, 7308, 8044, 8716, 9548, 10156, 11116, 11852, 12620, 13548, 14444, 15244, 16524, 17228, 18380, 19340, 20588, 21548
Offset: 0

Views

Author

Indranil Ghosh, Jan 18 2017

Keywords

Comments

a(n) mod 4 = 0 for n > 1.

Examples

			For n = 4, a few of the possible matrices are [-4,-3,-2,3], [-4,-3,3,-1], [-4,-2,-3,3], [-4,-2,2,0], [-3,4,-1,-1], [-3,4,3,2], [-2,-4,0,2], [-2,-4,3,-3], [-1,4,1,0], [-1,4,3,3], [0,-4,0,4], [0,-4,1,-1], [0,-3,0,3], [1,2,3,0], [1,2,3,1], [1,2,3,2], [1,2,3,3], [1,2,3,4], [1,3,2,-4], [1,3,2,-3], [2,-1,0,1],... There are 268 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d] where a = M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2]. So, a(4) = 268.
		

Crossrefs

Programs

  • Python
    def t(n):
        s=0
        for a in range(-n,n+1):
            for b in range(-n,n+1):
                for c in range(-n,n+1):
                    for d in range(-n,n+1):
                        if (a+b+c+d)==(a*d+b*c):
                            s+=1
        return s
    for i in range(0,169):
        print(f"{i} {t(i)}")
Showing 1-4 of 4 results.