This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280596 #5 Feb 16 2025 08:33:39 %S A280596 1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,2,0,1,1,2,0,1,1,2, %T A280596 1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,3,1,1,3,3,1,1,3,3,2,1,3,4,2,1,3,4,2,1, %U A280596 3,4,2,1,3,4,3,1,4,4,3,1,4,5,3,2,4,6,3,2,4,6,4,2,4,6,4,2,4,6,4,2,4,7,4,2,4,7,5,2 %N A280596 Expansion of Product_{p prime, k>=2} (1 + x^(p^k)). %C A280596 Number of partitions of n into distinct proper prime powers (A246547). %H A280596 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a> %H A280596 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280596 G.f.: Product_{p prime, k>=2} (1 + x^(p^k)). %e A280596 a(25) = 2 because we have [25] and [16, 9]. %t A280596 nmax = 107; CoefficientList[Series[Product[(1 + Sign[PrimeOmega[k] - 1] Floor[1/PrimeNu[k]] x^k), {k, 2, nmax}], {x, 0, nmax}], x] %Y A280596 Cf. A054685, A106244, A246547, A280586. %K A280596 nonn %O A280596 0,26 %A A280596 _Ilya Gutkovskiy_, Jan 06 2017