cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280596 Expansion of Product_{p prime, k>=2} (1 + x^(p^k)).

This page as a plain text file.
%I A280596 #5 Feb 16 2025 08:33:39
%S A280596 1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,2,0,1,1,2,0,1,1,2,
%T A280596 1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,3,1,1,3,3,1,1,3,3,2,1,3,4,2,1,3,4,2,1,
%U A280596 3,4,2,1,3,4,3,1,4,4,3,1,4,5,3,2,4,6,3,2,4,6,4,2,4,6,4,2,4,6,4,2,4,7,4,2,4,7,5,2
%N A280596 Expansion of Product_{p prime, k>=2} (1 + x^(p^k)).
%C A280596 Number of partitions of n into distinct proper prime powers (A246547).
%H A280596 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H A280596 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A280596 G.f.: Product_{p prime, k>=2} (1 + x^(p^k)).
%e A280596 a(25) = 2 because we have [25] and [16, 9].
%t A280596 nmax = 107; CoefficientList[Series[Product[(1 + Sign[PrimeOmega[k] - 1] Floor[1/PrimeNu[k]] x^k), {k, 2, nmax}], {x, 0, nmax}], x]
%Y A280596 Cf. A054685, A106244, A246547, A280586.
%K A280596 nonn
%O A280596 0,26
%A A280596 _Ilya Gutkovskiy_, Jan 06 2017