This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280609 #15 Feb 16 2025 08:33:39 %S A280609 9,25,27,49,121,125,169,243,289,343,361,529,841,961,1331,1369,1681, %T A280609 1849,2187,2197,2209,2809,3125,3481,3721,4489,4913,5041,5329,6241, %U A280609 6859,6889,7921,9409,10201,10609,11449,11881,12167,12769,16129,16807,17161,18769,19321,22201,22801,24389,24649,26569,27889,29791,29929 %N A280609 Odd prime powers with prime exponents. %C A280609 Intersection of A053810 and A061345. %H A280609 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>. %F A280609 a(n) = p^q, where p, q are primes and p > 2. %F A280609 Sum_{n>=1} 1/a(n) = Sum_{p prime} P(p) - A051006 = 0.25699271237062131298..., where P(s) is the prime zeta function. - _Amiram Eldar_, Sep 13 2024 %e A280609 9 is in the sequence because 9 = 3^2; %e A280609 25 is in the sequence because 25 = 5^2; %e A280609 27 is in the sequence because 27 = 3^3, etc. %t A280609 Select[Range[30000], PrimePowerQ[#1] && PrimeQ[PrimeOmega[#1]] && Mod[#1, 2] == 1 & ] %o A280609 (Python) %o A280609 from sympy import primepi, integer_nthroot, primerange %o A280609 def A280609(n): %o A280609 def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p)[0])-1 for p in primerange(x.bit_length()))) %o A280609 def bisection(f,kmin=0,kmax=1): %o A280609 while f(kmax) > kmax: kmax <<= 1 %o A280609 while kmax-kmin > 1: %o A280609 kmid = kmax+kmin>>1 %o A280609 if f(kmid) <= kmid: %o A280609 kmax = kmid %o A280609 else: %o A280609 kmin = kmid %o A280609 return kmax %o A280609 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A280609 Cf. A000961, A034785, A051006, A053810, A061345, A078422, A246547, A246551, A246655. %K A280609 nonn,easy %O A280609 1,1 %A A280609 _Ilya Gutkovskiy_, Jan 06 2017