This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280631 #31 Jan 10 2022 14:56:09 %S A280631 0,24,1,43,19,762,640,3732,6577,16061,247146,273840,879326,5380812, %T A280631 10593200,171880711,105176740,517694394,559015193,824827924 %N A280631 Starting position (after the decimal point) of the first n-digit palindrome in the decimal expansion of Pi. %C A280631 The first 10-digit palindrome in the decimal expansion of Pi (0136776310) first appears at a palindromic position (16061). %e A280631 a(2) = 24 because the first 2-digit palindrome in the decimal expansion of Pi (33) starts 24 digits after the decimal point. %e A280631 3.14159265358979323846264(33)... %t A280631 With[{d = First@ RealDigits@ N[Pi, 10^6]}, Prepend[DeleteCases[Rest@ #, 0], First@ #] &@ Flatten@ Map[If[Length@ # == 0, 0, #[[1, 1]] - 1] &@ SequencePosition[d, #] &, Table[If[Length@ # == 0, {}, First@ #] &@ Select[Partition[d, n, 1], # == Reverse@ # &], {n, 20}]]] (* _Michael De Vlieger_, Jan 07 2017, Version 10.1 *) %o A280631 (Python) %o A280631 from sympy import S %o A280631 # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then %o A280631 # with open('pi-billion.txt', 'r') as f: pi_digits = f.readline() %o A280631 pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above %o A280631 pi_digits = pi_digits.replace(".", "") %o A280631 def ispal(s): return s == s[::-1] %o A280631 def a(n): %o A280631 for idx in range(len(pi_digits)-n): %o A280631 if ispal(pi_digits[idx:idx+n]): %o A280631 return int(pi_digits[idx:idx+n]), idx %o A280631 return None, None # Not found: Increase number of digits %o A280631 print([a(n)[1] for n in range(1, 13)]) # _Michael S. Branicky_, Jan 10 2022 %Y A280631 Cf. A000796, A002113, A279885. %K A280631 nonn,base,more,less %O A280631 1,2 %A A280631 _Bobby Jacobs_, Jan 06 2017 %E A280631 a(14)-a(15) from _Michael De Vlieger_, Jan 07 2017 %E A280631 a(16)-a(20) from _Michael S. Branicky_, Jan 10 2022