cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280634 Number of partitions of 2n into two refactorable parts.

This page as a plain text file.
%I A280634 #16 Feb 16 2025 08:33:39
%S A280634 1,1,0,0,2,0,1,1,1,2,0,1,2,0,1,1,0,2,1,0,2,1,0,3,0,1,1,0,2,1,1,2,0,2,
%T A280634 0,2,2,1,1,3,1,2,1,1,2,3,0,5,2,2,1,2,2,3,1,4,1,4,0,5,1,2,1,3,1,3,1,3,
%U A280634 1,5,0,7,1,3,1,3,2,3,1,5,0,6,0,7,1,3,1,5,0,3
%N A280634 Number of partitions of 2n into two refactorable parts.
%H A280634 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RefactorableNumber.html">Refactorable Number</a>
%H A280634 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A280634 a(n) = Sum_{i=1..n} (1-sign(i mod d(i))) * (1-sign((2n-i) mod d(2n-i))) where d(n) is the number of divisors of n.
%e A280634 a(5) = 2; There are two partitions of 2*5 = 10 into two refactorable parts: (1,9) and (2,8).
%p A280634 with(numtheory): A280634:=n->add((1-signum((i mod tau(i))))*(1-signum((2*n-i) mod tau(2*n-i))), i=1..n): seq(A280634(n), n=1..150);
%t A280634 Table[Sum[(1 - Sign[Mod[i, DivisorSigma[0, i]]]) (1 - Sign[Mod[#, DivisorSigma[0, #]]] &[2 n - i]), {i, n}], {n, 90}] (* _Michael De Vlieger_, Jan 07 2017 *)
%Y A280634 Cf. A000005, A033950, A172398, A280226.
%K A280634 nonn,easy
%O A280634 1,5
%A A280634 _Wesley Ivan Hurt_, Jan 06 2017