A280653 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute triangles with integer coordinates that have a bounding box of size n X k.
0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 0, 0, 6, 22, 40, 0, 0, 2, 20, 46, 64, 0, 0, 2, 20, 44, 70, 96, 0, 0, 2, 8, 42, 76, 98, 136, 0, 0, 2, 8, 34, 74, 104, 138, 176, 0, 0, 2, 8, 22, 72, 110, 148, 186, 208, 0, 0, 2, 4, 18, 56, 112, 146, 188, 234, 264, 0, 0, 2, 4, 18
Offset: 1
Examples
Triangle begins: 0 0,0 0,0,8 0,0,6,24 0,0,6,22,40 0,0,2,20,46,64 0,0,2,20,44,70,96 0,0,2,8,42,76,98,136 0,0,2,8,34,74,104,138,176 0,0,2,8,22,72,110,148,186,208 0,0,2,4,18,56,112,146,188,234,264 0,0,2,4,18,44,94,152,198,244,286,328 0,0,2,4,18,32,86,150,196,254,296,342,392 ----- For n=3, k=3: o.o o.. o.. .o. .o. .o. ..o ..o ... ..o ..o o.. ..o ... o.. o.. .o. o.. .o. ..o o.. o.o .o. ..o so T(3,3)=8 ----- For n=4, k=3: o..o o..o o... .o.. ..o. ...o .... .... ...o .... .... o... .o.. ..o. o... o..o o..o ...o so T(4,3)=6 ----- For n=6, k=3: o..... .....o .....o o..... o..... .....o so T(6,3)=2
Links
- Lars Blomberg, Table of n, a(n) for n = 1..9870 (the first 140 rows)
Comments