cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280659 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has at least 5 distinct prime factors.

This page as a plain text file.
%I A280659 #66 Apr 10 2019 07:25:50
%S A280659 1,2309,421,1889,841,1469,1261,1049,1681,629,2101,209,2521,1769,541,
%T A280659 2189,121,2609,961,1349,1381,929,1801,509,2221,89,2641,1649,661,2069,
%U A280659 241,2489,1081,1229,1501,809,1921,389,2341,1949,361,2369,1201,1109,1621,689,2041
%N A280659 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has at least 5 distinct prime factors.
%C A280659 Conjecturally: this sequence is a permutation of the natural numbers, and a(n) ~ n.
%C A280659 The first fixed points are: 1, 7379, 7730, 7765, 7846, 9535, 9903, 11604, 11631, 11741, 12674, 15549, 15824, 16670, 16745, 16800, 16806, 16841.
%C A280659 This sequence has similarities with A285487: here we consider the sum of consecutive terms, there the product of consecutive terms.
%C A280659 From _Rémy Sigrist_, Jul 16 2017: (Start)
%C A280659 The scatterplot of the first terms presents rectangular clusters of points near the origin; these clusters seem to correspond to indexes n satisfying a(n) + a(n+1) < 2 * prime#(5) (where prime(k)# = A002110(k)).
%C A280659 Near the origin, we also have ranges of more than hundred consecutive terms where the function b satisfying b(n) = lpf(a(n)) (where lpf = A020639) is constant (and equals 2, 3 or 5).
%C A280659 These features are highlighted in the alternate scatterplots provided in the Links section.
%C A280659 There features are also visible in the scatterplots of variants of this sequence where we increase the minimum number of distinct prime factors required for the sum of two consecutive terms.
%C A280659 (End)
%H A280659 Rémy Sigrist, <a href="/A280659/b280659.txt">Table of n, a(n) for n = 1..10000</a>
%H A280659 Rémy Sigrist, <a href="/A280659/a280659.gp.txt">PARI program for A280659</a>
%H A280659 Rémy Sigrist, <a href="/A280659/a280659.png">Scatterplot of the first 10000 terms, highlighting the rectangular clusters near the origin</a>
%H A280659 Rémy Sigrist, <a href="/A280659/a280659_1.png">Scatterplot of the first 10000 terms, highlighting lpf(a(n)) = 2, 3 or 5</a>
%e A280659 The first terms, alongside the primes p dividing a(n)+a(n+1), are:
%e A280659 n       a(n)    p
%e A280659 --      ----    --------------
%e A280659 1       1       2, 3, 5, 7, 11
%e A280659 2       2309    2, 3, 5, 7,     13
%e A280659 3       421     2, 3, 5, 7, 11
%e A280659 4       1889    2, 3, 5, 7,     13
%e A280659 5       841     2, 3, 5, 7, 11
%e A280659 6       1469    2, 3, 5, 7,     13
%e A280659 7       1261    2, 3, 5, 7, 11
%e A280659 8       1049    2, 3, 5, 7,     13
%e A280659 9       1681    2, 3, 5, 7, 11
%e A280659 10      629     2, 3, 5, 7,     13
%e A280659 11      2101    2, 3, 5, 7, 11
%e A280659 12      209     2, 3, 5, 7,     13
%e A280659 13      2521    2, 3, 5,    11, 13
%e A280659 14      1769    2, 3, 5, 7, 11
%e A280659 15      541     2, 3, 5, 7,     13
%e A280659 16      2189    2, 3, 5, 7, 11
%e A280659 17      121     2, 3, 5, 7,     13
%e A280659 18      2609    2, 3, 5, 7,         17
%e A280659 19      961     2, 3, 5, 7, 11
%e A280659 20      1349    2, 3, 5, 7,     13
%Y A280659 Cf. A002110, A020639, A285487.
%K A280659 nonn,look
%O A280659 1,2
%A A280659 _Rémy Sigrist_, Apr 25 2017