A288798 Lexicographically earliest sequence of distinct positive terms such that the absolute difference of two consecutive terms has at least 5 distinct prime factors.
1, 2311, 4621, 331, 2641, 4951, 121, 2431, 4741, 451, 2761, 31, 2341, 4651, 361, 2671, 4981, 151, 2461, 4771, 481, 2791, 61, 2371, 4681, 391, 2701, 5011, 181, 2491, 4801, 511, 2821, 91, 2401, 4711, 421, 2731, 5041, 211, 2521, 4831, 541, 2851, 5161, 871, 3181
Offset: 1
Keywords
Examples
The first terms, alongside the primes p dividing |a(n) - a(n+1)|, are: n a(n) p -- ---- -------------- 1 1 2, 3, 5, 7, 11 2 2311 2, 3, 5, 7, 11 3 4621 2, 3, 5, 11, 13 4 331 2, 3, 5, 7, 11 5 2641 2, 3, 5, 7, 11 6 4951 2, 3, 5, 7, 23 7 121 2, 3, 5, 7, 11 8 2431 2, 3, 5, 7, 11 9 4741 2, 3, 5, 11, 13 10 451 2, 3, 5, 7, 11 11 2761 2, 3, 5, 7, 13 12 31 2, 3, 5, 7, 11 13 2341 2, 3, 5, 7, 11 14 4651 2, 3, 5, 11, 13 15 361 2, 3, 5, 7, 11 16 2671 2, 3, 5, 7, 11 17 4981 2, 3, 5, 7, 23 18 151 2, 3, 5, 7, 11 19 2461 2, 3, 5, 7, 11 20 4771 2, 3, 5, 11, 13
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..25000
- Rémy Sigrist, PARI program for A288798
Crossrefs
Cf. A280659.
Comments