cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280662 G.f.: Product_{k>=1, j>=1} 1/(1 - x^(j*k^4)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 232, 298, 387, 493, 632, 799, 1013, 1270, 1597, 1988, 2478, 3066, 3795, 4666, 5739, 7018, 8582, 10442, 12699, 15379, 18614, 22443, 27039, 32470, 38957, 46601, 55694, 66383, 79047, 93901, 111432
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2017

Keywords

Comments

In general, if m>=3 and g.f. = Product_{k>=1, j>=1} 1/(1-x^(j*k^m)), then a(n, m) ~ exp(Pi*sqrt(2*Zeta(m)*n/3) + Pi^(-1/m) * Gamma(1+1/m) * Zeta(1+1/m) * Zeta(1/m) * (6*n/Zeta(m))^(1/(2*m))) * 2^(m/4 - 7/8) * Pi^(m/4) * Zeta(m)^(1/8) / (3^(1/8) * n^(5/8)).

Crossrefs

Cf. A006171 (m=1), A004101 (m=2), A280661 (m=3).
Cf. A280664.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[1/Product[1-x^(j*k^4), {k, 1, Floor[nmax^(1/4)]+1}, {j, 1, Floor[nmax/k^4]+1}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi^3 * sqrt(n/15)/3 + 2^(-7/4) * 3^(3/8) * 5^(1/8) * Pi^(-3/4) * Gamma(1/4) * Zeta(5/4) * Zeta(1/4) * n^(1/8)) * Pi^(3/2) / (3^(3/8) * 5^(1/8) * n^(5/8)).