cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280680 The square roots of the radii (a, b, c) of three primitive mutually tangent circles all touching the same straight line, with a > b > c.

This page as a plain text file.
%I A280680 #13 Feb 16 2025 08:33:39
%S A280680 6,3,2,12,4,3,15,10,6,20,5,4,28,21,12,30,6,5,35,14,10,40,24,15,42,7,6,
%T A280680 45,36,20,56,8,7,63,18,14,66,55,30,70,30,21,72,9,8,77,44,28,84,60,35,
%U A280680 88,33,24,90,10,9,91,78,42,99,22,18,104,65,40
%N A280680 The square roots of the radii (a, b, c) of three primitive mutually tangent circles all touching the same straight line, with a > b > c.
%H A280680 Colin Barker, <a href="/A280680/b280680.txt">Table of n, a(n) for n = 1..3000</a>
%H A280680 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TangentCircles.html">Tangent Circles</a>
%e A280680 The first few triples are [6, 3, 2], [12, 4, 3], [15, 10, 6], [20, 5, 4].
%o A280680 (PARI)
%o A280680 a280680(amax) = {
%o A280680   my(L=List());
%o A280680   for(a=1, amax,
%o A280680     for(b=1, a-1,
%o A280680       c=(1/(1/a + 1/b))^2;
%o A280680       if(type(c)=="t_INT" && gcd([a^2,b^2,c])==1,
%o A280680         listput(L, [a,b,sqrtint(c)])
%o A280680       )
%o A280680     )
%o A280680   );
%o A280680   Vec(L)
%o A280680 }
%o A280680 concat(a280680(100))
%Y A280680 Cf. A106430, A246429, A247372, A265189, A280679.
%K A280680 nonn,tabf
%O A280680 1,1
%A A280680 _Colin Barker_, Jan 07 2017