This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280708 #19 Jan 20 2017 13:45:22 %S A280708 1,8,24,24,86,1260,1890,14136,197400,10467660,1231572090 %N A280708 Lexicographically earliest sequence such that no subsequence sums to a prime. %C A280708 This sequence is monotonically increasing. %C A280708 So far, apart from a(4) this sequence is identical to A052349. %e A280708 For n = 4, a(4) = 24 because all subsets have nonprime sums: %e A280708 1 + 8 = 9 = 3^2 %e A280708 1 + 24 = 25 = 5^2 %e A280708 8 + 24 = 32 = 2^5 %e A280708 24 + 24 = 48 = 2^4*3 %e A280708 1 + 8 + 24 = 33 = 3*11 %e A280708 1 + 24 + 24 = 49 = 7^2 %e A280708 8 + 24 + 24 = 56 = 2^3*7 %e A280708 1 + 8 + 24 + 24 = 57 = 3*19 %p A280708 S:= {0}: count:= 0: %p A280708 x:= 1: %p A280708 while x < 10^6 do %p A280708 if ormap(s -> isprime(s+x), S) then x:= x+1 %p A280708 else %p A280708 count:= count+1; %p A280708 A[count]:= x; %p A280708 S:= S union map(`+`,S,x); %p A280708 fi %p A280708 od: %p A280708 seq(A[i],i=1..count); # _Robert Israel_, Jan 20 2017 %t A280708 t = {1}; c = 1; Print[1]; While[Length[t] < 11, r = Rest[Subsets[t]]; s = Table[Total[r[[i]]], {i, Length[r]}]; While[PrimeQ[c] || Union[PrimeQ[s + c]] != {False}, c++]; Print[c]; AppendTo[t, c]] (* _Hans Havermann_, Jan 20 2017 *) %Y A280708 Cf. A052349. %K A280708 nonn,hard,more %O A280708 1,2 %A A280708 _Peter Kagey_, Jan 07 2017 %E A280708 a(9) and a(10) from _Dmitry Kamenetsky_, Jan 12 2017 %E A280708 a(11) from _Hans Havermann_, Jan 20 2017