cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280709 The number of monic integer polynomials of degree n all of whose roots are distinct and of modulus at most 1.

Original entry on oeis.org

1, 3, 6, 10, 16, 24, 38, 58, 86, 122, 172, 236, 328, 448, 606, 802, 1060, 1380, 1806, 2338, 3018, 3846, 4900, 6180, 7816, 9808, 12294, 15274, 18982, 23418, 28938, 35542, 43638, 53226, 64942, 78786, 95686, 115642, 139754, 168022, 202086, 241946
Offset: 0

Views

Author

Christopher J. Smyth, Jan 07 2017

Keywords

Comments

Such polynomials are a product of distinct cyclotomic polynomials, possibly multiplied by z. This follows from a classical result of Kronecker -- see Links.

Examples

			a(2)=6 because the six polynomials z^2+z+1, z^2+1, z^2-z+1, z^2-z, z^2+z and z^2-1 are the only ones of the required type.
		

Crossrefs

Cf. A280611 (variant where all roots must have modulus exactly 1);
Cf. A120963 (variant where multiple roots are allowed).

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + x) Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 120}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

a(0) = 1 and a(n) = b(n)+b(n-1) for n >= 1, where b(n) = A280611(n).
G.f.: (1+x)*Product_{i>=1} (1+x^phi(i)) = (1+x)*Product_{j>=1} (1+x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
It is also the Euler transform of A280712 except with its first two terms (2,1) replaced by (3,0).
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (2*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021