This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280715 #5 Jan 08 2017 11:35:26 %S A280715 1,0,1,1,2,2,3,4,6,7,9,12,15,19,23,29,36,44,53,65,78,94,112,134,159, %T A280715 189,222,263,307,361,420,491,569,661,764,883,1017,1170,1343,1539,1761, %U A280715 2011,2293,2611,2968,3369,3819,4323,4887,5518,6222,7007,7883,8857,9942,11144,12483,13964,15609,17426,19440,21664 %N A280715 Expansion of Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))). %C A280715 Number of partitions of n into parts that are primes (A000040), squares of primes (A001248) or cubes of primes (A030078). %H A280715 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280715 G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))). %e A280715 a(8) = 6 because we have [8], [5, 3], [4, 4], [4, 2, 2], [3, 3, 2], [2, 2, 2, 2]. %t A280715 nmax = 61; CoefficientList[Series[Product[1/((1 - x^Prime[k]) (1 - x^Prime[k]^2) (1 - x^Prime[k]^3)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A280715 Cf. A000040, A000607, A001248, A023893, A030078, A087797, A090677, A111901, A279760, A280125. %K A280715 nonn %O A280715 0,5 %A A280715 _Ilya Gutkovskiy_, Jan 07 2017