This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280716 #6 Feb 16 2025 08:33:39 %S A280716 1,0,0,1,0,1,0,1,1,0,1,1,1,1,1,2,2,1,3,2,3,3,3,4,4,3,5,4,5,6,4,8,6,8, %T A280716 8,9,11,10,11,14,13,14,15,16,19,16,20,22,22,23,26,29,30,31,35,39,38, %U A280716 43,44,49,50,52,58,59,64,67,71,77,82,85,93,97,107,108,117,125,131,138,143,157,162,168,179,194,199 %N A280716 Expansion of Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)), where mu() is the Moebius function (A008683). %C A280716 Number of partitions of n into distinct odd squarefree parts > 1. %H A280716 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 16.4.3 "Partitions into square-free parts", pp.351-352 %H A280716 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Squarefree.html">Squarefree</a> %H A280716 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280716 G.f.: Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)). %e A280716 a(18) = 3 because we have [15, 3], [13, 5] and [11, 7]. %t A280716 nmax = 84; CoefficientList[Series[Product[1 + MoebiusMu[2 k - 1]^2 x^(2 k - 1), {k, 2, nmax}], {x, 0, nmax}], x] %Y A280716 Cf. A005117, A008683, A056911, A073576, A134337, A144338, A280128, A280169. %K A280716 nonn %O A280716 0,16 %A A280716 _Ilya Gutkovskiy_, Jan 07 2017