This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280718 #21 Feb 16 2025 08:33:39 %S A280718 1,5,10,10,5,6,20,30,20,5,10,30,35,30,30,30,25,30,60,60,25,5,35,80,70, %T A280718 51,35,50,80,90,80,30,35,60,80,95,90,90,50,75,140,140,85,20,70,120, %U A280718 130,120,95,115,100,115,140,155,110,40,80,200,230,140,81,120,200,190,180,120,80,100,160,240,200,155,120,140,245,260,230 %N A280718 Expansion of (Sum_{k>=0} x^(k*(3*k-1)/2))^5. %C A280718 Number of ways to write n as an ordered sum of 5 pentagonal numbers (A000326). %C A280718 a(n) > 0 for all n >= 0. %C A280718 Every number is the sum of at most 5 pentagonal numbers. %C A280718 Every number is the sum of at most k k-gonal numbers (Fermat's polygonal number theorem). %H A280718 Ilya Gutkovskiy, <a href="/A280718/a280718.pdf">Extended graphical example</a> %H A280718 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a> %H A280718 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %F A280718 G.f.: (Sum_{k>=0} x^(k*(3*k-1)/2))^5. %e A280718 a(5) = 6 because we have: %e A280718 [5, 0, 0, 0, 0] %e A280718 [0, 5, 0, 0, 0] %e A280718 [0, 0, 5, 0, 0] %e A280718 [0, 0, 0, 5, 0] %e A280718 [0, 0, 0, 0, 5] %e A280718 [1, 1, 1, 1, 1] %t A280718 nmax = 76; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, 0, nmax}]^5, {x, 0, nmax}], x] %Y A280718 Cf. A000326, A003679, A008439, A038671, A280719, A282248. %K A280718 nonn %O A280718 0,2 %A A280718 _Ilya Gutkovskiy_, Feb 10 2017