This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280719 #25 Feb 16 2025 08:33:39 %S A280719 1,6,15,20,15,6,7,30,60,60,30,6,15,60,90,66,45,60,80,90,66,50,120,180, %T A280719 135,60,15,60,186,210,141,126,120,126,165,180,241,300,210,90,90,180, %U A280719 270,270,210,212,270,270,200,210,366,450,390,270,135,210,375,360,396,420,300,330,375,380,510,480,336,450,510,390,330 %N A280719 Expansion of (Sum_{k>=0} x^(k*(2*k-1)))^6. %C A280719 Number of ways to write n as an ordered sum of 6 hexagonal numbers (A000384). %C A280719 a(n) > 0 for all n >= 0. %C A280719 Every number is the sum of at most 6 hexagonal numbers. %C A280719 Every number is the sum of at most k k-gonal numbers (Fermat's polygonal number theorem). %H A280719 Ilya Gutkovskiy, <a href="/A280719/a280719.pdf">Extended graphical example</a> %H A280719 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HexagonalNumber.html">Hexagonal Number</a> %H A280719 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %F A280719 G.f.: (Sum_{k>=0} x^(k*(2*k-1)))^6. %e A280719 a(6) = 7 because we have: %e A280719 [6, 0, 0, 0, 0, 0] %e A280719 [0, 6, 0, 0, 0, 0] %e A280719 [0, 0, 6, 0, 0, 0] %e A280719 [0, 0, 0, 6, 0, 0] %e A280719 [0, 0, 0, 0, 6, 0] %e A280719 [0, 0, 0, 0, 0, 6] %e A280719 [1, 1, 1, 1, 1, 1] %t A280719 nmax = 70; CoefficientList[Series[Sum[x^(k (2 k - 1)), {k, 0, nmax}]^6, {x, 0, nmax}], x] %Y A280719 Cf. A000384, A007536, A008440, A045848, A280718, A282248. %K A280719 nonn %O A280719 0,2 %A A280719 _Ilya Gutkovskiy_, Feb 10 2017