This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280724 #7 Feb 16 2025 08:33:39 %S A280724 1,2,3,5,7,9,11,13,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63, %T A280724 66,69,73,77,81,85,89,93,97,101,105,109,113,117,121,125,129,133,137, %U A280724 141,145,149,153,157,161,165,169,173,177,181,185,189,193,197,201,205,209,213,217,221,225,229,233,237,241,245 %N A280724 Expansion of 1/(1 - x) + (1/(1 - x)^2)*Sum_{k>=0} x^(3^k). %C A280724 Sums of lengths of ternary numbers (A007089). %H A280724 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Ternary.html">Ternary</a> %F A280724 G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{k>=0} x^(3^k). %F A280724 a(n) = 1 + Sum_{k=1..n} floor(log_3(k)) + 1. %e A280724 ----------------------- %e A280724 n base 3 length a(n) %e A280724 ----------------------- %e A280724 0 | 0 | 1 | 1 %e A280724 1 | 1 | 1 | 2 %e A280724 2 | 2 | 1 | 3 %e A280724 3 | 10 | 2 | 5 %e A280724 4 | 11 | 2 | 7 %e A280724 5 | 12 | 2 | 9 %e A280724 6 | 20 | 2 | 11 %e A280724 7 | 21 | 2 | 13 %e A280724 8 | 22 | 2 | 15 %e A280724 9 | 100 | 3 | 18 %e A280724 ----------------------- %t A280724 CoefficientList[Series[1/(1 - x) + (1/(1 - x)^2) Sum[x^3^k, {k, 0, 15}], {x, 0, 70}], x] %t A280724 Table[1 + Sum[Floor[Log[3, k]] + 1, {k, 1, n}], {n, 0, 70}] %Y A280724 Cf. A007089, A062153, A081604, A083652, A117804. %K A280724 nonn,base,easy %O A280724 0,2 %A A280724 _Ilya Gutkovskiy_, Jan 07 2017