cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280759 Generalized Catalan triangle A_3 read by rows.

This page as a plain text file.
%I A280759 #19 Mar 31 2023 10:45:24
%S A280759 1,1,1,1,3,3,3,2,1,12,12,12,9,6,3,1,55,55,55,43,31,19,10,4,1,273,273,
%T A280759 273,218,163,108,65,34,15,5,1,1428,1428,1428,1155,882,609,391,228,120,
%U A280759 55,21,6,1,7752,7752,7752,6324,4896,3468,2313,1431,822,431,203
%N A280759 Generalized Catalan triangle A_3 read by rows.
%H A280759 Lars Blomberg, <a href="/A280759/b280759.txt">Table of n, a(n) for n = 0..1599</a> (the first 40 rows)
%H A280759 Toufik Mansour, I. L. Ramirez, <a href="https://ajc.maths.uq.edu.au/pdf/81/ajc_v81_p447.pdf">Enumerations of polyominoes determined by Fuss-Catalan words</a>, Australas. J. Combin. 81 (3) (2021) 47-457
%H A280759 D. Merlini, R. Sprugnoli, M. C. Verri, <a href="https://doi.org/10.1006/jcta.2002.3273">The Tennis Ball Problem</a>, J. Comb. Theory A 99 (2002) 307-344, Table 2
%H A280759 Sheng-Liang Yang, LJ Wang, <a href="https://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p420.pdf">Taylor expansions for the m-Catalan numbers</a>, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431. Formula (5).
%e A280759 Triangle begins:
%e A280759      1,
%e A280759      1,    1,    1,
%e A280759      3,    3,    3,    2,   1,
%e A280759     12,   12,   12,    9,   6,   3,   1,
%e A280759     55,   55,   55,   43,  31,  19,  10,   4,   1,
%e A280759    273,  273,  273,  218, 163, 108,  65,  34,  15,  5,  1,
%e A280759   1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1,
%e A280759   ...
%Y A280759 Cf. A001764 (row sums?), A062745 (rows reversed)
%K A280759 nonn,tabf
%O A280759 0,5
%A A280759 _N. J. A. Sloane_, Jan 16 2017
%E A280759 More terms from _Lars Blomberg_, Jan 25 2017