This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280759 #19 Mar 31 2023 10:45:24 %S A280759 1,1,1,1,3,3,3,2,1,12,12,12,9,6,3,1,55,55,55,43,31,19,10,4,1,273,273, %T A280759 273,218,163,108,65,34,15,5,1,1428,1428,1428,1155,882,609,391,228,120, %U A280759 55,21,6,1,7752,7752,7752,6324,4896,3468,2313,1431,822,431,203 %N A280759 Generalized Catalan triangle A_3 read by rows. %H A280759 Lars Blomberg, <a href="/A280759/b280759.txt">Table of n, a(n) for n = 0..1599</a> (the first 40 rows) %H A280759 Toufik Mansour, I. L. Ramirez, <a href="https://ajc.maths.uq.edu.au/pdf/81/ajc_v81_p447.pdf">Enumerations of polyominoes determined by Fuss-Catalan words</a>, Australas. J. Combin. 81 (3) (2021) 47-457 %H A280759 D. Merlini, R. Sprugnoli, M. C. Verri, <a href="https://doi.org/10.1006/jcta.2002.3273">The Tennis Ball Problem</a>, J. Comb. Theory A 99 (2002) 307-344, Table 2 %H A280759 Sheng-Liang Yang, LJ Wang, <a href="https://ajc.maths.uq.edu.au/pdf/64/ajc_v64_p420.pdf">Taylor expansions for the m-Catalan numbers</a>, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431. Formula (5). %e A280759 Triangle begins: %e A280759 1, %e A280759 1, 1, 1, %e A280759 3, 3, 3, 2, 1, %e A280759 12, 12, 12, 9, 6, 3, 1, %e A280759 55, 55, 55, 43, 31, 19, 10, 4, 1, %e A280759 273, 273, 273, 218, 163, 108, 65, 34, 15, 5, 1, %e A280759 1428, 1428, 1428, 1155, 882, 609, 391, 228, 120, 55, 21, 6, 1, %e A280759 ... %Y A280759 Cf. A001764 (row sums?), A062745 (rows reversed) %K A280759 nonn,tabf %O A280759 0,5 %A A280759 _N. J. A. Sloane_, Jan 16 2017 %E A280759 More terms from _Lars Blomberg_, Jan 25 2017