This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280776 #19 Jan 22 2017 21:24:04 %S A280776 1,-5,-43,-579,-44477,-5326191,-180306541,-203331297947, %T A280776 -58726239094693,-781618285277957,-1025587838964854273, %U A280776 -35763822710356866613,-330773478104531041960421,-237504847171108896327033959,-196526060612842999084524774697,-20633624138373135772483762873819 %N A280776 Numerators of coefficients in asymptotic expansion of C_n (number of connected chord diagrams, A000699). %H A280776 Gheorghe Coserea, <a href="/A280776/b280776.txt">Table of n, a(n) for n = 0..101</a> %H A280776 Michael Borinsky, <a href="https://arxiv.org/abs/1603.01236">Generating asymptotics for factorially divergent sequences</a>, arXiv preprint arXiv:1603.01236 [math.CO], 2016. %e A280776 Coefficients are 1, -5/2, -43/8, -579/16, -44477/128, -5326191/1280, -180306541/3072, ... %o A280776 (PARI) %o A280776 A000699_seq(N) = { %o A280776 my(a = vector(N)); a[1] = 1; %o A280776 for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a; %o A280776 }; %o A280776 seq(N) = my(C = 'x*Ser(A000699_seq(N))); Vec(x*exp(1-(2*C+C^2)/(2*x))/C); %o A280776 apply(numerator, seq(16)) \\ _Gheorghe Coserea_, Jan 22 2017 %Y A280776 Cf. A000699, A280775, A111111, A280777, A280778, A280779, A280780, A280781. %K A280776 sign,frac %O A280776 0,2 %A A280776 _N. J. A. Sloane_, Jan 19 2017 %E A280776 More terms from _Gheorghe Coserea_, Jan 22 2017