This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280778 #27 Jan 22 2017 21:41:09 %S A280778 1,-4,-6,-154,-1610,-34588,-4666292,-553625626,-1158735422, %T A280778 -388434091184,-31268175015478,-2796356409576766,-4624948938397276052, %U A280778 -1691272281281652408568,-2154089954877183990112,-170222948041126582837968646,-5761785676811885455064909606,-55629298859254851627617870836 %N A280778 Numerators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775). %H A280778 Gheorghe Coserea, <a href="/A280778/b280778.txt">Table of n, a(n) for n = 0..101</a> %H A280778 Michael Borinsky, <a href="https://arxiv.org/abs/1603.01236">Generating asymptotics for factorially divergent sequences</a>, arXiv preprint arXiv:1603.01236 [math.CO], 2016. %e A280778 Coefficients are 1, -4, -6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ... %o A280778 (PARI) %o A280778 A000699_seq(N) = { %o A280778 my(a = vector(N)); a[1] = 1; %o A280778 for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a; %o A280778 }; %o A280778 seq(N) = { %o A280778 my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2)); %o A280778 Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M); %o A280778 }; %o A280778 apply(numerator, seq(18)) \\ _Gheorghe Coserea_, Jan 22 2017 %Y A280778 Cf. A000699, A280775, A111111, A280777, A280779, A280780, A280781. %K A280778 sign,frac %O A280778 0,2 %A A280778 _N. J. A. Sloane_, Jan 19 2017 %E A280778 More terms from _Gheorghe Coserea_, Jan 22 2017