cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280824 Numbers with an even number of digits and with an even number of distinct digits.

This page as a plain text file.
%I A280824 #15 Feb 16 2025 08:33:39
%S A280824 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35,
%T A280824 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,
%U A280824 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,1000,1001,1010
%N A280824 Numbers with an even number of digits and with an even number of distinct digits.
%C A280824 Differs from A139819 (the latter contains 100, for example). - _R. J. Mathar_, Jan 17 2017
%H A280824 Michael S. Branicky, <a href="/A280824/b280824.txt">Table of n, a(n) for n = 1..10000</a>
%H A280824 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Digit.html">Digit</a>
%H A280824 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A280824 A000035(A055642(a(n))) = 0.
%F A280824 A000035(A043537(a(n))) = 0.
%F A280824 a(n) = A029742(n) for n < 82.
%p A280824 isA280824 := proc(n)
%p A280824     if n < 10 then
%p A280824         return false;
%p A280824     end if;
%p A280824     dgs := convert(n,base,10) ;
%p A280824     if type(nops(dgs),'even') then
%p A280824         type(nops(convert(dgs,set)),'even') ;
%p A280824     else
%p A280824         false;
%p A280824     end if;
%p A280824 end proc: # _R. J. Mathar_, Jan 17 2017
%t A280824 Select[Range[1010], Mod[Length[IntegerDigits[#1]], 2] == 0 && Mod[Length[Union[IntegerDigits[#1]]], 2] == 0 & ]
%o A280824 (Python)
%o A280824 def ok(n): s = str(n); return len(s)%2 == 0 == len(set(s))%2
%o A280824 print(list(filter(ok, range(1011)))) # _Michael S. Branicky_, Oct 12 2021
%Y A280824 Cf. A000035, A001637, A029742, A043537, A055642, A280823, A280825, A280826.
%K A280824 nonn,base,easy
%O A280824 1,1
%A A280824 _Ilya Gutkovskiy_, Jan 08 2017