This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280827 #19 Jan 11 2017 03:15:36 %S A280827 -1,0,0,1,0,1,0,2,1,0,0,1,0,0,0,2,0,1,0,1,0,1,0,2,0,1,1,1,0,1,0,3,1,1, %T A280827 0,2,0,1,1,2,0,1,0,2,1,1,0,3,0,1,1,2,0,2,1,2,1,1,0,2,0,1,1,4,1,2,0,2, %U A280827 1,1,0,3,0,1,1,2,1,2,0,3,2,1,0,2,1,1,1,3,0,2,1,2,1,1,1,4,0,1,2,1 %N A280827 a(n) = A076649(n) - A055642(n). %C A280827 a(1) is the only negative term in this sequence. - _Ely Golden_, Jan 10 2017 %C A280827 a(n) = 0 if and only if n is a member of A109608. - _Ely Golden_, Jan 10 2017 %H A280827 Ely Golden, <a href="/A280827/b280827.txt">Table of n, a(n) for n = 1..10000</a> %H A280827 Ely Golden, <a href="/A280827/a280827.txt">Proof that a(n)>=0 for all n>1</a> %e A280827 a(10) = 0, as 2*5 have 2 digits total, and 10 has 2 digits. Thus a(10) = 2-2 = 0. %e A280827 a(1) is defined to be -1, as the empty product has 0 digits, and 1 has 1 digit. Thus a(1) = 0-1 = -1. %o A280827 (SageMath) %o A280827 def digits(x, n): %o A280827 if(x<=0|n<2): %o A280827 return [] %o A280827 li=[] %o A280827 while(x>0): %o A280827 d=divmod(x, n) %o A280827 li.insert(0,d[1]) %o A280827 x=d[0] %o A280827 return li; %o A280827 def factorDigits(x, n): %o A280827 if(x<=0|n<2): %o A280827 return [] %o A280827 li=[] %o A280827 f=list(factor(x)) %o A280827 for c in range(len(f)): %o A280827 for d in range(f[c][1]): %o A280827 ld=digits(f[c][0], n) %o A280827 li+=ld %o A280827 return li; %o A280827 def digitDiff(x,n): %o A280827 return len(factorDigits(x,n))-len(digits(x,n)) %o A280827 radix=10 %o A280827 index=1 %o A280827 while(index<=10000): %o A280827 print(str(index)+" "+str(digitDiff(index,radix))) %o A280827 index+=1 %Y A280827 Cf. A109608, A076649. %K A280827 sign,base,easy %O A280827 1,8 %A A280827 _Ely Golden_, Jan 08 2017