A280831 Number of ways to write 8*n+7 as x^2 + y^2 + z^2 + w^2 with x^4 + 1680*y^3*z a square, where x,y,z,w are positive integers.
1, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 5, 3, 3, 1, 3, 2, 3, 2, 6, 5, 3, 4, 4, 3, 12, 6, 2, 7, 5, 3, 10, 4, 5, 2, 7, 5, 4, 5, 3, 8, 2, 2, 3, 4, 6, 7, 8, 1, 5, 2, 6, 9, 6, 5, 9, 9, 4, 6, 1, 4, 14, 5, 4, 12, 3, 11, 12, 1, 4, 8, 6, 7, 4, 6, 7
Offset: 0
Keywords
Examples
a(0) = 1 since 8*0+7 = 1^2 + 1^2 + 1^2 + 2^2 with 1^4 + 1680*1^3*1 = 41^2. a(11) = 1 since 8*11 + 7 = 95 = 6^2 + 3^2 + 1^2 + 7^2 with 6^4 + 1680*3^3*1 = 216^2. a(244) = 1 since 8*244 + 7 = 1959 = 13^2 + 13^2 + 39^2 + 10^2 with 13^4 + 1680*13^3*39 = 11999^2. a(289) = 1 since 8*289 + 7 = 2319 = 14^2 + 7^2 + 45^2 + 7^2 with 14^4 + 1680*7^3*45 = 5096^2. a(664) = 1 since 8*664 + 7 = 5319 = 3^2 + 6^2 + 45^2 + 57^2 with 3^4 + 1680*6^3*45 = 4041^2. a(749) = 1 since 8*749 + 7 = 5999 = 31^2 + 18^2 + 15^2 + 67^2 with 31^4 + 1680*18^3*15 = 12161^2. a(983) = 1 since 8*983 + 7 = 7871 = 27^2 + 54^2 + 1^2 + 65^2 with 27^4 + 1680*54^3*1 = 16281^2. a(1228) = 1 since 8*1228 + 7 = 9831 = 35^2 + 10^2 + 91^2 + 15^2 with 35^4 + 1680*10^3*91 = 12425^2. a(1819) = 1 since 8*1819 + 7 = 14559 = 34^2 + 1^2 + 39^2 + 109^2 with 34^4 + 1680*1^3*39 = 1184^2. a(2503) = 1 since 8*2503 + 7 = 20031 = 97^2 + 7^2 + 13^2 + 102^2 with 97^4 + 1680*7^3*13 = 9799^2. a(2506) = 1 since 8*2506 + 7 = 20055 = 47^2 + 6^2 + 77^2 + 109^2 with 47^4 + 1680*6^3*77 = 5729^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175 (2017), 167-190. (Cf. Conjecture 4.10(iv).)
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[r=0;Do[If[SQ[8n+7-x^2-y^2-z^2]&&SQ[x^4+1680y^3*z],r=r+1],{x,1,Sqrt[8n+6]},{y,1,Sqrt[8n+6-x^2]},{z,1,Sqrt[8n+6-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}]
Comments