A280849 Square array T(j,k) read by antidiagonals upwards, in which column k lists the numbers n having k odd divisors greater than sqrt(2*n), with j >= 1, k >= 0.
1, 2, 3, 4, 5, 21, 6, 7, 27, 75, 8, 9, 33, 135, 105, 12, 10, 39, 147, 189, 315, 16, 11, 45, 165, 225, 525, 495, 20, 13, 51, 171, 297, 675, 585, 945, 24, 14, 55, 175, 351, 693, 765, 1155, 1575, 28, 15, 57, 195, 385, 735, 855, 1365, 2475, 2835, 32, 17, 63, 207, 405, 819, 1071, 1485, 2625
Offset: 1
Examples
The upper-left corner of the square array begins: 1, 3, 21, 75, 105, 315, 495, 945, 1575, 2835, ... 2, 5, 27, 135, 189, 525, 585, 1155, 2475, ... 4, 7, 33, 147, 225, 675, 765, 1365, ... 6, 9, 39, 165, 297, 693, 855, ... 8 10, 45, 171, 351, 735, ... 12, 11, 51, 175, 385, ... 16, 13, 55, 195, ... 20, 14, 57, ... 24, 15, ... 28, ... ...
Crossrefs
Programs
-
Mathematica
jMax = 11; nMax = 5000; cnt[n_] := cnt[n] = DivisorSum[n, Boole[OddQ[#] && # > Sqrt[2n]]&]; col[k_] := Select[Range[nMax], cnt[#] == k&]; T[j_, k_] := col[k][[j]]; Table[T[j-k, k], {j, 1, jMax}, {k, 0, j-1}] // Flatten (* Jean-François Alcover, Feb 16 2017 *)
Comments