cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A280853 Number of n X 2 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 9, 29, 110, 442, 1708, 6596, 25624, 99432, 385584, 1495696, 5802080, 22506144, 87301312, 338644032, 1313606016, 5095497344, 19765519104, 76670777600, 297407202816, 1153647430144, 4475017382912, 17358666073088, 67334551345152
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Column 2 of A280859.

Examples

			Some solutions for n=4:
..0..0. .0..1. .0..1. .0..1. .0..1. .0..1. .0..0. .0..1. .0..0. .0..0
..1..2. .2..1. .2..2. .0..2. .0..2. .2..2. .1..2. .1..2. .1..1. .1..2
..1..0. .2..0. .1..0. .1..1. .1..1. .1..1. .0..0. .0..0. .0..2. .0..2
..0..2. .1..1. .0..2. .0..2. .2..2. .0..0. .1..1. .1..1. .1..0. .0..1
		

Crossrefs

Cf. A280859.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) + 8*a(n-3) - 8*a(n-4) for n>5.
Empirical g.f.: x*(1 - x)*(2 + 3*x - 4*x^3) / (1 - 4*x + 2*x^2 - 8*x^3 + 8*x^4). - Colin Barker, Mar 22 2018

A280854 Number of n X 3 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

4, 29, 46, 96, 256, 678, 1698, 4358, 11218, 28650, 73354, 188066, 481554, 1233194, 3159018, 8091050, 20722730, 53077762, 135947682, 348198514, 891836994, 2284251018, 5850611770, 14985083066, 38381073050, 98304843826, 251786685106
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Examples

			Some solutions for n=4:
..0..0..1. .0..1..1. .0..0..1. .0..1..0. .0..1..2. .0..1..0. .0..0..1
..1..2..1. .0..2..2. .1..2..2. .2..2..1. .2..1..0. .2..1..2. .2..1..2
..0..2..0. .1..1..0. .0..1..0. .1..0..0. .2..0..2. .2..0..2. .2..0..0
..1..1..0. .0..2..2. .0..2..2. .1..2..2. .1..1..2. .1..1..0. .1..1..2
		

Crossrefs

Column 3 of A280859.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-3) - a(n-4) + 2*a(n-6) - 2*a(n-7) for n>9.
Empirical g.f.: x*(4 + 21*x - 12*x^2 - 12*x^3 - 48*x^4 + 11*x^5 - 4*x^6 - 16*x^7 + 12*x^8) / (1 - 2*x - 4*x^3 + x^4 - 2*x^6 + 2*x^7). - Colin Barker, Feb 14 2019

A280855 Number of nX4 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

11, 110, 96, 124, 216, 462, 1005, 2010, 3907, 7756, 15749, 31804, 63463, 126758, 254453, 511180, 1024877, 2052836, 4115191, 8254198, 16552251, 33182160, 66522097, 133381078, 267442273, 536212952, 1075064777, 2155474072, 4321733703
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Column 4 of A280859.

Examples

			Some solutions for n=4
..0..1..1..0. .0..1..0..1. .0..1..2..2. .0..1..1..2. .0..1..1..2
..2..0..2..0. .0..2..0..2. .2..1..0..1. .0..2..0..0. .0..2..0..2
..2..1..2..1. .1..2..1..2. .2..0..2..1. .1..2..1..2. .2..1..0..1
..0..1..0..1. .1..0..1..0. .1..1..2..0. .1..0..1..2. .0..1..2..1
		

Crossrefs

Cf. A280859.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) +2*a(n-4) +3*a(n-5) -4*a(n-6) -3*a(n-7) -4*a(n-10) +2*a(n-12) for n>16

A280856 Number of nX5 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

30, 442, 256, 216, 282, 491, 968, 1857, 3220, 5281, 8574, 14339, 24694, 42833, 73650, 125361, 212438, 360727, 614668, 1049609, 1791800, 3055487, 5205640, 8868669, 15113516, 25765385, 43926544, 74885231, 127643494, 217567203, 370837946
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Column 5 of A280859.

Examples

			Some solutions for n=4
..0..0..1..1..0. .0..1..1..2..1. .0..1..0..1..1. .0..1..0..0..1
..1..2..2..0..2. .2..2..0..0..1. .0..2..0..2..0. .2..1..2..1..2
..1..0..1..1..2. .0..1..1..2..2. .1..2..1..1..0. .0..0..2..0..2
..0..2..2..0..0. .2..2..0..0..1. .1..0..0..2..2. .2..1..1..0..1
		

Crossrefs

Cf. A280859.

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-3) +2*a(n-4) -a(n-5) +4*a(n-6) -a(n-7) -a(n-8) -2*a(n-9) -3*a(n-12) for n>18

A280857 Number of nX6 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

82, 1708, 678, 462, 491, 712, 1202, 2268, 4220, 7108, 11240, 17330, 26934, 43062, 70776, 117452, 193842, 316394, 511776, 825074, 1333130, 2163076, 3521462, 5738446, 9343090, 15187700, 24659768, 40027188, 64994524, 105599072, 171639520
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Column 6 of A280859.

Examples

			Some solutions for n=4
..0..1..1..2..2..1. .0..1..0..1..1..2. .0..1..0..1..0..1. .0..0..1..2..2..0
..0..2..0..0..1..0. .1..2..0..2..0..0. .2..1..2..1..2..2. .1..2..1..0..1..0
..1..2..1..2..2..0. .0..2..1..2..1..2. .2..0..2..0..0..1. .1..0..2..0..2..1
..1..0..1..0..1..1. .1..0..1..0..1..0. .1..0..1..1..2..2. .2..0..1..1..2..0
		

Crossrefs

Cf. A280859.

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) +6*a(n-7) -5*a(n-8) +3*a(n-9) -3*a(n-10) -3*a(n-11) +2*a(n-12) -4*a(n-13) +a(n-14) -2*a(n-15) -2*a(n-16) for n>22

A280858 Number of nX7 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

224, 6596, 1698, 1005, 968, 1202, 1738, 2877, 5244, 9569, 15872, 24653, 36954, 55077, 83190, 128817, 204084, 326793, 522262, 828099, 1300592, 2029441, 3159306, 4927841, 7712840, 12114811, 19061740, 29999825, 47157384, 74031085, 116080358
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Column 7 of A280859.

Examples

			Some solutions for n=4
..0..0..1..1..2..1..2. .0..1..0..0..1..0..0. .0..1..1..2..1..2..2
..1..2..2..0..0..1..0. .2..2..1..2..1..2..1. .2..2..0..2..0..0..1
..1..0..1..1..2..2..0. .1..0..0..2..0..2..0. .0..1..0..1..1..2..1
..2..0..2..0..0..1..1. .1..2..1..1..0..1..0. .0..1..2..2..0..2..0
		

Crossrefs

Cf. A280859.

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) -a(n-5) +2*a(n-6) -a(n-7) +6*a(n-8) -4*a(n-9) -4*a(n-12) -a(n-13) -2*a(n-14) -3*a(n-15) -3*a(n-16) +3*a(n-17) -3*a(n-18) +a(n-19) -a(n-20) +2*a(n-23) for n>29

A280852 Number of n X n 0..2 arrays with no element equal to more than one of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 9, 46, 124, 282, 712, 1738, 4124, 9562, 21752, 48730, 107992, 237082, 516376, 1117210
Offset: 1

Views

Author

R. H. Hardin, Jan 09 2017

Keywords

Comments

Diagonal of A280859.

Examples

			Some solutions for n=4
..0..1..1..2. .0..1..2..2. .0..1..1..0. .0..1..1..2. .0..1..2..0
..0..2..0..0. .0..1..0..1. .0..2..0..2. .0..2..0..0. .2..1..2..1
..1..2..1..2. .2..2..0..2. .1..2..1..2. .1..2..1..1. .2..0..0..1
..1..0..0..2. .0..1..1..2. .1..0..0..1. .1..0..0..2. .1..1..2..2
		

Crossrefs

Cf. A280859.
Showing 1-7 of 7 results.