cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280863 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^2)).

This page as a plain text file.
%I A280863 #5 Jan 11 2017 03:23:00
%S A280863 1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,12,15,19,24,30,37,45,55,66,79,
%T A280863 95,115,140,171,209,255,312,381,464,564,685,832,1011,1229,1494,1818,
%U A280863 2214,2697,3285,4000,4869,5926,7211,8772,10670,12980,15793,19219,23391,28470,34653,42179,51336,62475,76025,92510
%N A280863 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^2)).
%C A280863 Number of compositions (ordered partitions) of n into odd squares (A016754).
%H A280863 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%H A280863 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A280863 G.f.: 1/(1 - Sum_{k>=0} x^((2*k+1)^2)).
%e A280863 a(12) = 5 because we have [9, 1, 1, 1], [1, 9, 1, 1], [1, 1, 9, 1], [1, 1, 1, 9] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
%t A280863 nmax = 63; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)^2, {k, 0, nmax}]), {x, 0, nmax}], x]
%Y A280863 Cf. A000290, A006456, A016754, A167661, A167700, A280542.
%K A280863 nonn
%O A280863 0,10
%A A280863 _Ilya Gutkovskiy_, Jan 09 2017