cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280865 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).

This page as a plain text file.
%I A280865 #4 Jan 11 2017 03:23:10
%S A280865 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,
%T A280865 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,30,33,37,
%U A280865 42,48,55,63,72,82,93,105,118,132,147,163,180,198,217,237,258,280,303,327,352,378,405,433,463,496
%N A280865 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).
%C A280865 Number of compositions (ordered partitions) of n into odd cubes (A016755).
%H A280865 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%H A280865 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A280865 G.f.: 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).
%e A280865 a(28) = 3 because we have [27, 1], [1, 27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
%t A280865 nmax = 82; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)^3, {k, 0, nmax}]), {x, 0, nmax}], x]
%Y A280865 Cf. A000578, A016755, A023358, A003108, A078128, A279329, A280130.
%K A280865 nonn
%O A280865 0,28
%A A280865 _Ilya Gutkovskiy_, Jan 09 2017