This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280869 #27 Feb 16 2025 08:33:39 %S A280869 1,-1008,220752,16519104,399517776,4624512480,34423752384, %T A280869 187506813312,814794618960,2975666040144,9486668147040,27052407031104, %U A280869 70486610910912,169931677686624,384163181281152,820165393918080,1668889095288912,3249638073414432 %N A280869 Expansion of E_6(q)^2 in powers of q. %H A280869 Seiichi Manyama, <a href="/A280869/b280869.txt">Table of n, a(n) for n = 0..10000</a> %H A280869 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a> %F A280869 E6(q)^2 = (1 - 504 Sum_{i>=1} sigma_5(i)q^i)^2 where sigma_5(n) is A001160. %F A280869 A008411(n) - a(n) = 1728*A000594(n). %F A280869 A029828(n) - 691*a(n) = 762048*A000594(n). %F A280869 A029828(n) = 441*A008411(n) + 250*a(n). %e A280869 G.f. = 1 - 1008*q + 220752*q^2 + 16519104*q^3 + 399517776*q^4 + 4624512480*q^5 + ... %t A280869 terms = 18; %t A280869 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A280869 E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *) %Y A280869 Cf. A000594, A001160, A008411, A013973 (E_6), A029828 (691*E_12). %K A280869 sign %O A280869 0,2 %A A280869 _Seiichi Manyama_, Jan 28 2017