cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280874 Expansion of Product_{k>=1} (1 - x^(6*k)) * (1 + x^k) / (1 - x^k).

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 39, 62, 96, 146, 218, 320, 463, 662, 936, 1310, 1816, 2496, 3404, 4608, 6196, 8278, 10994, 14520, 19076, 24938, 32448, 42032, 54218, 69656, 89149, 113680, 144456, 182952, 230966, 290688, 364774, 456446, 569600, 708938, 880128, 1089984
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 09 2017

Keywords

Comments

Convolution of A219601 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1-x^(6*k))*(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ Pi*sqrt(2) * BesselI(1, sqrt(8*n+2)*Pi/3) / (3*sqrt(12*n+3)).
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*2^(3/4)*n^(3/4)) * (1 + (Pi/6 - 9/(16*Pi))/sqrt(2*n) + (Pi^2/144 - 135/(1024*Pi^2) - 15/64)/n).