cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280877 Occurrences of decrease of the probability density P(a(n)) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n); i.e., P(a(n)) < P(a(n)-1).

This page as a plain text file.
%I A280877 #44 Jun 28 2025 12:55:28
%S A280877 2,4,6,8,10,12,14,15,16,18,20,21,22,24,26,28,30,32,33,34,36,38,40,42,
%T A280877 44,45,46,48,50,52,54,56,58,60,62,63,64,66,68,70,72,74,75,76,78,80,82,
%U A280877 84,86,88,90,92,94,96,98,99,100,102,104,105,106,108,110,112,114,116,118,120,122,124,126,128
%N A280877 Occurrences of decrease of the probability density P(a(n)) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n); i.e., P(a(n)) < P(a(n)-1).
%C A280877 Probability densities satisfying P(a(n)) < P(a(n)-1).
%C A280877 A285022 is a subset.
%C A280877 Related to Euler phi function by P(a(n)) = ((2*Sum_{1 <= m <= a(n)} phi(m))-1)/a(n)^2.
%C A280877 The sequence is very regular in the sense that all {0 < i} 2i appear in this sequence, as well as all {0 < i} 30i - 15 appear in this sequence.
%C A280877 Presuming P(n) > 0.6: phi(n)/n < 1/2 for n congruent to 0 mod 2, P(n) < P(n-1).
%C A280877 Presuming P(n) > 0.6: phi(n)/n < 8/15 for n congruent to 15 mod 30, P(n) < P(n-1).
%C A280877 A280877 = {i > 0 | 2i} union {i > 0 | 30i - 15} union A280878 union A280879.
%C A280877 The irregular appearances are given in the two disjoint sequences A280878 and A280879.
%C A280877 See also A285022.
%C A280877 Experimental observation: n/a(n) < Euler constant (A001620).
%C A280877 Probability density P(a(n)) = A018805(a(n))/a(n)^2.
%C A280877 There seems, with good reason, to be a high correlation between the odd numbers in this sequence and A079814. - _Peter Munn_, Apr 11 2021
%H A280877 A.H.M. Smeets, <a href="/A280877/b280877.txt">Table of n, a(n) for n = 1..5682</a>
%H A280877 Mark Kac, <a href="https://archive.org/details/statisticalindep0000kacm">Statistical independence in probability, analysis and number theory</a>, Carus Monograph 12, Math. Assoc. Amer., 1959, pp. 53-79.
%t A280877 P[n_] := P[n] = (2 Sum[CoprimeQ[i, j] // Boole, {i, n}, {j, i-1}] + 1)/n^2;
%t A280877 Select[Range[2, 200], P[#] < P[#-1]&] (* _Jean-François Alcover_, Nov 15 2019 *)
%o A280877 (Python)
%o A280877 from math import gcd
%o A280877 t = 1
%o A280877 to = 1
%o A280877 i = 1
%o A280877 x = 1
%o A280877 while x < 10000:
%o A280877     x = x + 1
%o A280877     y = 0
%o A280877     while y < x:
%o A280877         y = y + 1
%o A280877         if gcd(x,y) == 1:
%o A280877             t = t + 2
%o A280877     e = t*(x-1)*(x-1) - to*x*x
%o A280877     if e < 0:
%o A280877         print(i,x)
%o A280877         i = i + 1
%o A280877     to = t
%o A280877 (PARI) P(n) = sum(i=1, n, sum(j=1, n, gcd(i,j)==1))/n^2;
%o A280877 isok(n) = P(n) < P(n-1); \\ _Michel Marcus_, Jan 28 2017
%Y A280877 Cf. A001620, A018805, A079814, A279796, A280878, A285022.
%K A280877 nonn
%O A280877 1,1
%A A280877 _A.H.M. Smeets_, Jan 09 2017