This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280877 #44 Jun 28 2025 12:55:28 %S A280877 2,4,6,8,10,12,14,15,16,18,20,21,22,24,26,28,30,32,33,34,36,38,40,42, %T A280877 44,45,46,48,50,52,54,56,58,60,62,63,64,66,68,70,72,74,75,76,78,80,82, %U A280877 84,86,88,90,92,94,96,98,99,100,102,104,105,106,108,110,112,114,116,118,120,122,124,126,128 %N A280877 Occurrences of decrease of the probability density P(a(n)) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n); i.e., P(a(n)) < P(a(n)-1). %C A280877 Probability densities satisfying P(a(n)) < P(a(n)-1). %C A280877 A285022 is a subset. %C A280877 Related to Euler phi function by P(a(n)) = ((2*Sum_{1 <= m <= a(n)} phi(m))-1)/a(n)^2. %C A280877 The sequence is very regular in the sense that all {0 < i} 2i appear in this sequence, as well as all {0 < i} 30i - 15 appear in this sequence. %C A280877 Presuming P(n) > 0.6: phi(n)/n < 1/2 for n congruent to 0 mod 2, P(n) < P(n-1). %C A280877 Presuming P(n) > 0.6: phi(n)/n < 8/15 for n congruent to 15 mod 30, P(n) < P(n-1). %C A280877 A280877 = {i > 0 | 2i} union {i > 0 | 30i - 15} union A280878 union A280879. %C A280877 The irregular appearances are given in the two disjoint sequences A280878 and A280879. %C A280877 See also A285022. %C A280877 Experimental observation: n/a(n) < Euler constant (A001620). %C A280877 Probability density P(a(n)) = A018805(a(n))/a(n)^2. %C A280877 There seems, with good reason, to be a high correlation between the odd numbers in this sequence and A079814. - _Peter Munn_, Apr 11 2021 %H A280877 A.H.M. Smeets, <a href="/A280877/b280877.txt">Table of n, a(n) for n = 1..5682</a> %H A280877 Mark Kac, <a href="https://archive.org/details/statisticalindep0000kacm">Statistical independence in probability, analysis and number theory</a>, Carus Monograph 12, Math. Assoc. Amer., 1959, pp. 53-79. %t A280877 P[n_] := P[n] = (2 Sum[CoprimeQ[i, j] // Boole, {i, n}, {j, i-1}] + 1)/n^2; %t A280877 Select[Range[2, 200], P[#] < P[#-1]&] (* _Jean-François Alcover_, Nov 15 2019 *) %o A280877 (Python) %o A280877 from math import gcd %o A280877 t = 1 %o A280877 to = 1 %o A280877 i = 1 %o A280877 x = 1 %o A280877 while x < 10000: %o A280877 x = x + 1 %o A280877 y = 0 %o A280877 while y < x: %o A280877 y = y + 1 %o A280877 if gcd(x,y) == 1: %o A280877 t = t + 2 %o A280877 e = t*(x-1)*(x-1) - to*x*x %o A280877 if e < 0: %o A280877 print(i,x) %o A280877 i = i + 1 %o A280877 to = t %o A280877 (PARI) P(n) = sum(i=1, n, sum(j=1, n, gcd(i,j)==1))/n^2; %o A280877 isok(n) = P(n) < P(n-1); \\ _Michel Marcus_, Jan 28 2017 %Y A280877 Cf. A001620, A018805, A079814, A279796, A280878, A285022. %K A280877 nonn %O A280877 1,1 %A A280877 _A.H.M. Smeets_, Jan 09 2017