This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280879 #31 May 22 2025 10:21:45 %S A280879 5005,6545,7315,7735,8645,8855,10465,11165,11935,14245,25025,32725, %T A280879 35035,36575,38675,43225,44275,45815,51205,52325,54145,55055,55825, %U A280879 59675,60515,61985,65065,71225,71995,73255,78155,80465,83545,85085,95095,97405,99715 %N A280879 Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6). %C A280879 Probability densities satisfying P(a(n)) < P(a(n)-1) and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6). %C A280879 It appears that most numbers satisfy a(n) congruent to 35 (mod 70), but a(74) congruent to 15 (mod 70) and a(93) congruent to 55 (mod 70). %C A280879 Subset of A280877. %C A280879 P(n) = ((2*Sum_{m=1..a(n)} phi(m))-1)/a(n)^2 (Cf. Euler phi function A000010). %H A280879 Chai Wah Wu, <a href="/A280879/b280879.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..102 from A.H.M. Smeets) %o A280879 (Python) %o A280879 from fraction import gcd %o A280879 t = 1 %o A280879 to = 1 %o A280879 i = 1 %o A280879 x = 1 %o A280879 while x > 0: %o A280879 x = x + 1 %o A280879 y = 0 %o A280879 while y < x: %o A280879 y = y + 1 %o A280879 if gcd(x,y) == 1: %o A280879 t = t + 2 %o A280879 e = t*(x-1)*(x-1) - to*x*x %o A280879 if (e < 0 and x%2 == 1 and x%6 != 3): %o A280879 print(i,x) %o A280879 i = i + 1 %o A280879 to = t %o A280879 (PARI) P(n) = (2 *sum(j=1, n, eulerphi(j)) - 1)/n^2; %o A280879 isok(n) = (n % 2) && ((n % 6) != 3) && (P(n) < P(n-1)); \\ _Michel Marcus_, Jan 29 2017 %o A280879 (Python) %o A280879 from sympy import totient %o A280879 A280879_list, n, t = [], 1, 1 %o A280879 while len(A280879_list) < 1000: %o A280879 n += 1 %o A280879 h = totient(n) %o A280879 t2 = t+h %o A280879 if n % 2 and n % 6 != 3 and 2*(n*(h*n - 2*t2 + 1) + t2) < 1: %o A280879 A280879_list.append(n) %o A280879 t = t2 # _Chai Wah Wu_, Feb 11 2017 %Y A280879 Cf. A018805, A280877, A280878. %K A280879 nonn %O A280879 1,1 %A A280879 _A.H.M. Smeets_, Jan 09 2017