cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280879 Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).

This page as a plain text file.
%I A280879 #31 May 22 2025 10:21:45
%S A280879 5005,6545,7315,7735,8645,8855,10465,11165,11935,14245,25025,32725,
%T A280879 35035,36575,38675,43225,44275,45815,51205,52325,54145,55055,55825,
%U A280879 59675,60515,61985,65065,71225,71995,73255,78155,80465,83545,85085,95095,97405,99715
%N A280879 Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
%C A280879 Probability densities satisfying P(a(n)) < P(a(n)-1) and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
%C A280879 It appears that most numbers satisfy a(n) congruent to 35 (mod 70), but a(74) congruent to 15 (mod 70) and a(93) congruent to 55 (mod 70).
%C A280879 Subset of A280877.
%C A280879 P(n) = ((2*Sum_{m=1..a(n)} phi(m))-1)/a(n)^2 (Cf. Euler phi function A000010).
%H A280879 Chai Wah Wu, <a href="/A280879/b280879.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..102 from A.H.M. Smeets)
%o A280879 (Python)
%o A280879 from fraction import gcd
%o A280879 t = 1
%o A280879 to = 1
%o A280879 i = 1
%o A280879 x = 1
%o A280879 while x > 0:
%o A280879     x = x + 1
%o A280879     y = 0
%o A280879     while y < x:
%o A280879         y = y + 1
%o A280879         if gcd(x,y) == 1:
%o A280879             t = t + 2
%o A280879     e = t*(x-1)*(x-1) - to*x*x
%o A280879     if (e < 0 and x%2 == 1 and x%6 != 3):
%o A280879         print(i,x)
%o A280879         i = i + 1
%o A280879     to = t
%o A280879 (PARI) P(n) = (2 *sum(j=1, n, eulerphi(j)) - 1)/n^2;
%o A280879 isok(n) = (n % 2) && ((n % 6) != 3) && (P(n) < P(n-1)); \\ _Michel Marcus_, Jan 29 2017
%o A280879 (Python)
%o A280879 from sympy import totient
%o A280879 A280879_list, n, t = [], 1, 1
%o A280879 while len(A280879_list) < 1000:
%o A280879     n += 1
%o A280879     h = totient(n)
%o A280879     t2 = t+h
%o A280879     if n % 2 and n % 6 != 3 and 2*(n*(h*n - 2*t2 + 1) + t2) <  1:
%o A280879         A280879_list.append(n)
%o A280879     t = t2 # _Chai Wah Wu_, Feb 11 2017
%Y A280879 Cf. A018805, A280877, A280878.
%K A280879 nonn
%O A280879 1,1
%A A280879 _A.H.M. Smeets_, Jan 09 2017