cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280893 a(n) is the maximum prime factor of the concatenation of all the previous terms, with a(1)=1, a(2)=2.

This page as a plain text file.
%I A280893 #27 Aug 06 2017 22:08:10
%S A280893 1,2,3,41,43,1063,5479,111031,790000148543,790000148543,
%T A280893 326139075156576200419624217119,326139075156576200419624217119,
%U A280893 326139075156576200419624217119,246787955464079218902570922322710067417716295997334514692275780099917
%N A280893 a(n) is the maximum prime factor of the concatenation of all the previous terms, with a(1)=1, a(2)=2.
%H A280893 Hans Havermann, <a href="/A280893/b280893.txt">Table of n, a(n) for n = 1..15</a>
%e A280893 The maximum prime factor of concat(1,2) = 12 is 3, so a(3) = 3;
%e A280893 The maximum prime factor of concat(1,2,3) = 123 is 41, so a(4) = 41; etc.
%p A280893 with(numtheory): P:= proc(q) local a,b,c,k,n; print(1); print(2); a:=12;for n from 3 to q do b:=ifactors(a)[2]; c:=0; for k from 1 to nops(b) do if b[k][1]>c then c:=b[k][1]; fi; od; a:=a*10^(ilog10(c)+1)+c; print(c); od; end: P(10^2);
%t A280893 a = {1, 2}; Do[AppendTo[a, FactorInteger[FromDigits@ Flatten@ Map[IntegerDigits, a]][[-1, 1]]], {10}]; a (* _Michael De Vlieger_, Jan 10 2017 *)
%Y A280893 Cf. A280894.
%K A280893 nonn,base
%O A280893 1,2
%A A280893 _Paolo P. Lava_, Jan 10 2017
%E A280893 a(12)-a(13) from _Jon E. Schoenfield_, Jan 10 2017
%E A280893 a(14)-a(15) from _Hans Havermann_, Jan 12 2017