This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280928 #21 Apr 24 2025 17:34:34 %S A280928 1255,12955,17482,25105,100255,101299,105295,107329,117067,124483, %T A280928 127417,129595,132565,145273,146137,149782,163797,174082,174298, %U A280928 174793,174982,250105,256315,263155,295105,297463,307183,325615,371893,536539,687919,1002955,1004251,1012099,1025095,1029955 %N A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits. %C A280928 Subsequence of A176670 as well as A020342. %C A280928 Is this sequence the intersection of A176670 and A020342? %C A280928 Excluding 1, all members of A080718 are members of this sequence. The first member of this sequence that is not a member of A080718 is a(17)=163797. %H A280928 Michael S. Branicky, <a href="/A280928/b280928.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3643 from Ely Golden) %e A280928 100255 is a member of this sequence as 100255 = 5*20051, which is exactly the same set of digits as 100255. %o A280928 (SageMath) %o A280928 def digits(x, n): %o A280928 if((x<=0)|(n<2)): %o A280928 return [] %o A280928 li=[] %o A280928 while(x>0): %o A280928 d=divmod(x, n) %o A280928 li.append(d[1]) %o A280928 x=d[0] %o A280928 li.sort() %o A280928 return li; %o A280928 def factorDigits(x, n): %o A280928 if((x<=0)|(n<2)): %o A280928 return [] %o A280928 li=[] %o A280928 f=list(factor(x)) %o A280928 #ensures inequality of digits(x, n) and factorDigits(x, n) if x is prime %o A280928 if((len(f)==1)&(f[0][1]==1)): %o A280928 return []; %o A280928 for c in range(len(f)): %o A280928 for d in range(f[c][1]): %o A280928 ld=digits(f[c][0], n) %o A280928 li+=ld %o A280928 li.sort() %o A280928 return li; %o A280928 #this variable affects the radix %o A280928 radix=10 %o A280928 c=2 %o A280928 index=1 %o A280928 while(index<=100): %o A280928 if(digits(c,radix)==factorDigits(c,radix)): %o A280928 print(str(index)+" "+str(c)) %o A280928 index+=1 %o A280928 c+=1 %o A280928 print("complete") %o A280928 (Python) %o A280928 from sympy import factorint %o A280928 def ok(n): %o A280928 f = factorint(n) %o A280928 return sum(f.values()) > 1 and sorted(str(n)) == sorted("".join(str(p)*f[p] for p in f)) %o A280928 print([k for k in range(700000) if ok(k)]) # _Michael S. Branicky_, Apr 20 2025 %Y A280928 The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563. %Y A280928 Cf. A176670 %K A280928 nonn,base %O A280928 1,1 %A A280928 _Ely Golden_, Jan 11 2017