cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits.

This page as a plain text file.
%I A280928 #21 Apr 24 2025 17:34:34
%S A280928 1255,12955,17482,25105,100255,101299,105295,107329,117067,124483,
%T A280928 127417,129595,132565,145273,146137,149782,163797,174082,174298,
%U A280928 174793,174982,250105,256315,263155,295105,297463,307183,325615,371893,536539,687919,1002955,1004251,1012099,1025095,1029955
%N A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits.
%C A280928 Subsequence of A176670 as well as A020342.
%C A280928 Is this sequence the intersection of A176670 and A020342?
%C A280928 Excluding 1, all members of A080718 are members of this sequence. The first member of this sequence that is not a member of A080718 is a(17)=163797.
%H A280928 Michael S. Branicky, <a href="/A280928/b280928.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3643 from Ely Golden)
%e A280928 100255 is a member of this sequence as 100255 = 5*20051, which is exactly the same set of digits as 100255.
%o A280928 (SageMath)
%o A280928 def digits(x, n):
%o A280928     if((x<=0)|(n<2)):
%o A280928         return []
%o A280928     li=[]
%o A280928     while(x>0):
%o A280928         d=divmod(x, n)
%o A280928         li.append(d[1])
%o A280928         x=d[0]
%o A280928     li.sort()
%o A280928     return li;
%o A280928 def factorDigits(x, n):
%o A280928     if((x<=0)|(n<2)):
%o A280928         return []
%o A280928     li=[]
%o A280928     f=list(factor(x))
%o A280928     #ensures inequality of digits(x, n) and factorDigits(x, n) if x is prime
%o A280928     if((len(f)==1)&(f[0][1]==1)):
%o A280928         return [];
%o A280928     for c in range(len(f)):
%o A280928         for d in range(f[c][1]):
%o A280928             ld=digits(f[c][0], n)
%o A280928             li+=ld
%o A280928     li.sort()
%o A280928     return li;
%o A280928 #this variable affects the radix
%o A280928 radix=10
%o A280928 c=2
%o A280928 index=1
%o A280928 while(index<=100):
%o A280928     if(digits(c,radix)==factorDigits(c,radix)):
%o A280928         print(str(index)+" "+str(c))
%o A280928         index+=1
%o A280928     c+=1
%o A280928 print("complete")
%o A280928 (Python)
%o A280928 from sympy import factorint
%o A280928 def ok(n):
%o A280928     f = factorint(n)
%o A280928     return sum(f.values()) > 1 and sorted(str(n)) == sorted("".join(str(p)*f[p] for p in f))
%o A280928 print([k for k in range(700000) if ok(k)]) # _Michael S. Branicky_, Apr 20 2025
%Y A280928 The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.
%Y A280928 Cf. A176670
%K A280928 nonn,base
%O A280928 1,1
%A A280928 _Ely Golden_, Jan 11 2017