This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280932 #35 Jan 05 2025 19:51:41 %S A280932 56,97,153,250,403,653,1056,1709,2765,4474,7239,11713,18952,30665, %T A280932 49617,80282,129899,210181,340080,550261,890341,1440602,2330943, %U A280932 3771545,6102488,9874033,15976521,25850554,41827075,67677629,109504704,177182333,286687037 %N A280932 a(n) = 2*F(n-1) + 2*F(n-3) + 10*F(n-5) + 9*F(n-8) where n >= 8 and F = A000045. %H A280932 Vincenzo Librandi, <a href="/A280932/b280932.txt">Table of n, a(n) for n = 8..1100</a> %H A280932 H. Zhao and X. Li, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/44-1.html">On the Fibonacci numbers of trees</a>, The Fibonacci Quarterly, Vol. 44, Number 1 (2006), page 37. %H A280932 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A280932 G.f.: x^8*(56 + 41*x)/(1 - x - x^2). %F A280932 a(n) = a(n-1) + a(n-2). %F A280932 From the g.f.: a(n) = 56*F(n-7) + 41*F(n-8) = 41*F(n-6) + 15*F(n-7) = 15*F(n-5) + 26*F(n-6) = 26*F(n-4) - 11*F(n-5) = -11*F(n-3) + 37*F(n-4) = 37*F(n-2) - 48*F(n-3) = -48*F(n-1) + 85*F(n-2) = 85*F(n) - 133*F(n-1), and so on. %t A280932 LinearRecurrence[{1, 1}, {56, 97}, 35] %o A280932 (Magma) [2*Fibonacci(n-1)+2*Fibonacci(n-3)+10*Fibonacci(n-5)+9*Fibonacci(n-8): n in [8..40]]; %o A280932 (Magma) a0:=56; a1:=97; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; %Y A280932 Cf. A000045, A022130, A101156, A280931. %K A280932 nonn,easy %O A280932 8,1 %A A280932 _Vincenzo Librandi_, Jan 24 2017 %E A280932 Corrected and extended by _Bruno Berselli_, Jan 24 2017