cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280937 Expansion of Product_{k>=1} ((1 - x^(7*(2*k-1))) * (1 - x^(7*k)) / (1 - x^k)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 20, 26, 36, 46, 63, 79, 105, 132, 171, 213, 273, 336, 425, 522, 650, 793, 981, 1188, 1456, 1756, 2136, 2563, 3098, 3698, 4443, 5285, 6312, 7477, 8891, 10489, 12415, 14599, 17206, 20165, 23678, 27659, 32363, 37698, 43958, 51058, 59361
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 11 2017

Keywords

References

  • D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^(7*(2*k-1))) * (1-x^(7*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt(11*(24*n-1)/14)) / (7*sqrt((24*n-1)/11)).
a(n) ~ exp(Pi * sqrt(11*n/21)) * 11^(1/4) / (2 * 3^(1/4) * 7^(3/4) * n^(3/4)) * (1 -(3*sqrt(21)/(8*Pi*sqrt(11)) + Pi*sqrt(11)/(48*sqrt(21)))/sqrt(n) + (11*Pi^2/96768 - 315/(1408*Pi^2) + 5/128)/n).