This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280940 #27 Dec 31 2020 11:11:15 %S A280940 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,3,1,1,2,1, %T A280940 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,4,1,1,1,1,1,1,1 %N A280940 Irregular triangle read by rows: T(n,k) = number of subparts in the k-th part of the symmetric representation of sigma(n). %C A280940 The "subparts" of the symmetric representation of sigma(n) are the regions that arise after the dissection of the symmetric representation of sigma(n) into successive layers of width 1. %C A280940 The number of subparts in the symmetric representation of sigma(n) equals the number of odd divisors of n. %C A280940 For more information about "subparts" see A279387, A279388 and A279391. %C A280940 Note that we can find the symmetric representation of sigma(n) as the terraces at the n-th level (starting from the top) of the stepped pyramid described in A245092. %e A280940 Triangle begins (n = 1..21): %e A280940 1; %e A280940 1; %e A280940 1, 1; %e A280940 1; %e A280940 1, 1; %e A280940 2; %e A280940 1, 1; %e A280940 1; %e A280940 1, 1, 1; %e A280940 1, 1; %e A280940 1, 1; %e A280940 2; %e A280940 1, 1; %e A280940 1, 1; %e A280940 1, 2, 1; %e A280940 1; %e A280940 1, 1; %e A280940 3; %e A280940 1, 1; %e A280940 2; %e A280940 1, 1, 1, 1; %e A280940 ... %e A280940 For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1: %e A280940 . _ _ %e A280940 . | | | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . _ _ _| | _ _ _| | %e A280940 . 28 _| _ _| 23 _| _ _ _| %e A280940 . _| | _| _| | %e A280940 . | _| | _| _| %e A280940 . | _ _| | |_ _| %e A280940 . _ _ _ _ _ _| | _ _ _ _ _ _| | 5 %e A280940 . |_ _ _ _ _ _ _| |_ _ _ _ _ _ _| %e A280940 . %e A280940 . Figure 1. The symmetric Figure 2. After the dissection %e A280940 . representation of sigma(12) of the symmetric representation %e A280940 . has only one part which of sigma(12) into layers of %e A280940 . contains 28 cells, so width 1 we can see two "subparts" %e A280940 . A237271(12) = 1, and that contain 23 and 5 cells %e A280940 . A000203(12) = 28. respectively, so the 12th row of %e A280940 . this triangle is [2], and the %e A280940 . row sum is A001227(12) = 2, equaling %e A280940 . the number of odd divisors of 12. %e A280940 . %e A280940 For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3: %e A280940 . _ _ %e A280940 . | | | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . 8 | | 8 | | %e A280940 . | | | | %e A280940 . | | | | %e A280940 . _ _ _|_| _ _ _|_| %e A280940 . 8 _ _| | 7 _ _| | %e A280940 . | _| | _ _| %e A280940 . _| _| _| |_| %e A280940 . |_ _| |_ _| 1 %e A280940 . 8 | 8 | %e A280940 . _ _ _ _ _ _ _ _| _ _ _ _ _ _ _ _| %e A280940 . |_ _ _ _ _ _ _ _| |_ _ _ _ _ _ _ _| %e A280940 . %e A280940 . Figure 3. The symmetric Figure 4. After the dissection %e A280940 . representation of sigma(15) of the symmetric representation %e A280940 . has three parts of size 8 of sigma(15) into layers of %e A280940 . because every part contains width 1 we can see four "subparts". %e A280940 . 8 cells, so A237271(15) = 3, The first and third part contains %e A280940 . and A000203(15) = 8+8+8 = 24. one subpart each. The second part contains %e A280940 . two subparts, so the 15th row of this %e A280940 . triangle is [1, 2, 1], and the row %e A280940 . sum is A001227(15) = 4, equaling the %e A280940 . number of odd divisors of 15. %e A280940 . %Y A280940 Row sums give A001227 (number of odd divisors of n). %Y A280940 Row lengths is A237271. %Y A280940 Cf. A000203, A196020, A235791, A236104, A237048, A237270, A237591, A237593, A244050, A245092, A249351, A250068, A262626, A279387, A279388, A279391. %K A280940 nonn,tabf,more %O A280940 1,8 %A A280940 _Omar E. Pol_, Jan 11 2017