cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280965 Nonsquares whose distances to the two nearest squares are squares.

This page as a plain text file.
%I A280965 #17 Feb 27 2017 11:40:07
%S A280965 5,8,40,45,65,80,153,160,200,221,325,360,416,425,493,520,680,725,925,
%T A280965 936,1025,1040,1073,1088,1305,1360,1768,1800,1813,1845,1961,2000,2320,
%U A280965 2385,2501,2600,2925,3016,3185,3200,3400,3445,3848,3869,3944,3965,4640,4745,5185,5248,5265,5328,5525,5576,5785,5920,6120
%N A280965 Nonsquares whose distances to the two nearest squares are squares.
%C A280965 The sequence is infinite because there are terms of it between n^2 and (n+1)^2 whenever 2n+1 is a sum of two squares.
%H A280965 Charles R Greathouse IV, <a href="/A280965/b280965.txt">Table of n, a(n) for n = 1..10000</a>
%e A280965 a(3) = 40 because the two nearest squares are 36 and 49 and 40 - 36 = 4, 49 - 40 = 9 are both squares.
%t A280965 Select[Range[6120], IntegerQ[Sqrt[# - (Floor[Sqrt[#]])^2]] && IntegerQ[Sqrt[(Ceiling[Sqrt[#]])^2 - #]] &]
%o A280965 (PARI) is(n)=my(k=sqrtint(n)); issquare(n-k^2) && issquare((k+1)^2-n) && n>k^2 \\ _Charles R Greathouse IV_, Feb 27 2017
%o A280965 (PARI) list(lim)=my(v=List(),k2,K2,n); for(k=2,sqrtint(lim\1)-1, k2=k^2; K2=(k+1)^2; for(s=1,sqrtint(K2-k2-1), n=k2+s^2; if(issquare(K2-n), listput(v,n)))); k2=sqrtint(lim\1)^2; K2=(sqrtint(lim\1)+1)^2; for(n=k2+1,lim, if(issquare(n-k2) && issquare(K2-n), listput(v, n))); Vec(v) \\ _Charles R Greathouse IV_, Feb 27 2017
%Y A280965 Cf. A057653, A234334.
%K A280965 nonn
%O A280965 1,1
%A A280965 _Emmanuel Vantieghem_, Feb 27 2017