This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280987 #13 Aug 08 2025 15:04:01 %S A280987 0,0,1,2,3,9,1,6,4,1,9,21,1,9,9,16,9,24,1,33,17,1,9,21,0,9,1,41,21,33, %T A280987 17,6,33,19,33,25,25,21,1,1,33,81,17,21,45,1,33,85,49,69,57,77,27,81, %U A280987 1,81,1,1,21,57,59,81,33,60,21,33,45,51,81,1,9,66,41,9,97,1,81,81,1,57,117,73,33,145 %N A280987 {Concatenation n, n-1, n-2, ...3,2,1} mod sigma(n). %H A280987 Indranil Ghosh, <a href="/A280987/b280987.txt">Table of n, a(n) for n = 1..10000</a> %F A280987 a(n) = A000422(n) mod A000203(n). %e A280987 For n = 11, A000422(n) mod sigma(n) = 1110987654321 mod 12 = 9. S0 a(11) = 9. %t A280987 Table[Mod[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],DivisorSigma[ 1,n]],{n,90}] (* _Harvey P. Dale_, Jul 01 2020 *) %o A280987 (Python) %o A280987 def sigma(n): %o A280987 s=0 %o A280987 for i in range(1,n+1): %o A280987 if n%i==0: %o A280987 s+=i %o A280987 return s %o A280987 def C(n): %o A280987 s="" %o A280987 for i in range(n,0,-1): %o A280987 s+=str(i) %o A280987 return int(s) %o A280987 for i in range(1,101): %o A280987 print(i, C(i)%sigma(i)) %o A280987 (Python) %o A280987 from sympy import divisor_sigma %o A280987 def A280987(n): return int(''.join(map(str, range(n, 0, -1)))) % divisor_sigma(n) # _David Radcliffe_, Aug 08 2025 %Y A280987 Cf. A000203, A000422, A114795. %K A280987 nonn,base %O A280987 1,4 %A A280987 _Indranil Ghosh_, Jan 12 2017