This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280994 #7 Jan 12 2017 15:59:42 %S A280994 1,2,3,4,5,7,8,9,11,16,17,19,23,31,32,53,59,67,25,27,49,64,83,127,131, %T A280994 241,277,331,97,103,128,227,311,431,709,739,1523,1787,2221,81,121,256, %U A280994 289,361,509,563,719,1433,2063,3001,5381,5623,12763,15299,19577 %N A280994 Triangle read by rows giving Matula-Goebel numbers of planted achiral trees with n nodes. %C A280994 An achiral tree is either (case 1) a single node or (case 2) a finite constant sequence (t,t,..,t) of achiral trees. Only in case 2 is an achiral tree considered to be a generalized Bethe tree (according to A214577). %H A280994 E. Deutsch, <a href="http://arxiv.org/abs/1111.4288"> Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011. %e A280994 Triangle begins: %e A280994 1, %e A280994 2, %e A280994 3, 4, %e A280994 5, 7, 8, %e A280994 9, 11, 16, 17, 19, %e A280994 23, 31, 32, 53, 59, 67, %e A280994 25, 27, 49, 64, 83, 127, 131, 241, 277, 331. %t A280994 nn=7;MGNumber[_[]]:=1;MGNumber[x:_[__]]:=If[Length[x]===1,Prime[MGNumber[x[[1]]]],Times@@Prime/@MGNumber/@x]; %t A280994 cits[n_]:=If[n===1,{1},Join@@Table[ConstantArray[#,(n-1)/d]&/@cits[d],{d,Divisors[n-1]}]]; %t A280994 Table[Sort[MGNumber/@(cits[n]/.(1->{}))],{n,nn}] %Y A280994 Cf. A003238 (row lengths), A214577, A061773, A061775, A004111, A007097, A196545, A275870. %K A280994 nonn,tabf %O A280994 1,2 %A A280994 _Gus Wiseman_, Jan 12 2017