cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281008 Least positive integer k with exactly n odd divisors greater than sqrt(2*k).

Original entry on oeis.org

1, 3, 21, 75, 105, 315, 495, 945, 1575, 2835, 3465, 4095, 11025, 17955, 10395, 23205, 17325, 24255, 31185, 36855, 51975, 61425, 45045, 108675, 143325, 121275, 184275, 155925, 135135, 176715, 239085, 315315, 294525, 225225, 606375, 626535, 405405, 700245, 1531530, 1351350, 2072070, 1289925, 855855
Offset: 0

Views

Author

Omar E. Pol, Feb 16 2017

Keywords

Comments

Conjecture: a(n) is also the smallest number k having n pairs of equidistant subparts in the symmetric representation of sigma(k).
For more information about the "subparts" see A279387.
Observations about the known terms:
Observation 1: terms a(1)-a(51) are divisible by 3.
Observation 2: terms a(3)-a(51) are divisible by 5.

Examples

			a(3) = 75 because the divisors of 75 are [1, 3, 5, 15, 25, 75], and 75 has three odd divisors greater than the square root of 2*75 = 12.2..., and it is the smallest number with that property.
Other examples (conjectured):
2) The 75th row of A237593 is [38, 13, 7, 4, 3, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 3, 4, 7, 13, 38], and the 74th row of the same triangle is [38, 13, 6, 5, 3, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 3, 5, 6, 13, 38], therefore between both symmetric Dyck paths (described in A237593 and A279387) there are three pairs of equidistant subparts: [38, 38], [21, 21] and [3, 3]. That is the first row with that property, so a(3) = 75. (The diagram of the symmetric representation of sigma(75) is too large to include).
3) The 75th row of A196020 is [149, 73, 47, 0, 25, 19, 0, 0, 0, 5, 0], hence the 75th row of A280850 is [38, 38, 21, 0, 3, 3, 0, 0, 0, 21, 0]. There are three pairs of equidistant subparts [38, 38], [21, 21] and [3, 3]. That is the first row with that property, so a(3) = 75.
4) The 75th row of A237048 is [1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0]. The sum of the even-indexed terms is equal to 3. That is the first row with that property, so a(3) = 75.
5) The 75th row of A261699 is [1, 75, 3, 0, 5, 25, 0, 0, 0, 15, 0]. There are three even-indexed terms that are positive integers: [75, 25, 15]. That is the first row with that property, so a(3) = 75.
		

Crossrefs

Programs

  • Mathematica
    cnt[k_] := cnt[k] = DivisorSum[k, Boole[OddQ[#] && #>Sqrt[2k]]&]; a[n_] := a[n] = For[k = 1, True, k++, If[cnt[k]==n, Return[k]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
  • PARI
    a(n,{s=0},{q=1},{k=2},{w=1})={if(n<1,return(1));my(z,ii,F,d,L:list,V,p,ans:list);ans=List();if(q<1,q=1);if(k<2,k=2);while(k++,p=sqrt(2*k);F=factor(k);ii=vecsum(F[1,]);F=F[,1]~;L=List([1]);for(i=1,ii,forvec(y=vector(i,t,[1,#F]),d=prod(u=1,#y,F[y[u]]);if((d<=k)&&!(k%d),listput(L,d)),1));V=Set(Vec(L));if(n==sum(u=1,#V,(V[u]>p)&&(V[u]%2==!!w)),if(s,print1(V","));listput(ans,k);if(z++==q,if(#ans==1,return(k),return(Vec(ans))),n++)))} \\ with n>=1, "s" set to 1 also prints the divisors (of "w" version: 1 odd, 0 even) for the first "q" terms from the n-th, resuming their search with k>=2. - R. J. Cano, Feb 20 2017
    
  • PARI
    a(n)=my(k,s); while(k++, s=sqrtint(2*k); if(sumdiv(k>>valuation(k,2), d, d>s)==n, return(k))) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(10)-a(30) from Jean-François Alcover, Feb 16 2017
a(31)-a(43) from Michael De Vlieger, Feb 18 2017