This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281010 #31 Apr 18 2017 16:32:41 %S A281010 1,1,-1,1,1,1,1,0,0,-1,1,1,0,1,1,1,0,-1,1,0,-1,1,1,1,1,1,1,1,1,0,0,0, %T A281010 0,0,0,-1,1,1,1,0,0,0,1,1,1,1,0,0,-1,0,0,1,0,0,-1,1,1,1,1,1,2,1,1,1,1, %U A281010 1,1,0,0,0,0,1,-1,0,0,0,0,-1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,-1,0,0,0,0,1,0,0,0,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1 %N A281010 Triangle read by rows in which row 2n-1 lists the widths of the symmetric representation of sigma(n), and row 2n lists a finite sequence S together with -1, with the property that the partial sums of S give the row 2n-1. %C A281010 The row 2n-1 lists the widths of the terraces at the n-th level (starting from the top) of the pyramid described in A245092. %C A281010 The sum of the areas of these terraces equals A000203(n): the sum of the divisors of n. %C A281010 The k-th element of row 2n is associated to the k-th vertical cells at the n-th level of the pyramid. %C A281010 The row 2n shows where the subparts (or subregions) of the terraces starting and ending, in accordance with the values 1 or -1. %C A281010 The number of subparts in the n-th terrace equals A001227(n): the number of odd divisors of n. %C A281010 If n is odd then the number of subparts in the n-th terrace is also A000005(n): the number of divisors of n. %H A281010 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)</a> %H A281010 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the pyramid (first 16 levels)</a> %e A281010 Triangle begins: %e A281010 1; %e A281010 1,-1; %e A281010 1, 1, 1; %e A281010 1, 0, 0,-1; %e A281010 1, 1, 0, 1, 1; %e A281010 1, 0,-1, 1, 0;-1; %e A281010 1, 1, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 0, 0, 0, 1, 1, 1; %e A281010 1, 0, 0,-1, 0, 0, 1, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1; %e A281010 1, 0, 0, 0,-1, 0, 0, 0, 0, 1, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0,-1, 0, 1, 0, 0,-1, 0, 1, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,-1; %e A281010 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A281010 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0,-1; %e A281010 ... %e A281010 Written as an isosceles triangle the sequence begins: %e A281010 . %e A281010 . 1; %e A281010 . 1, -1; %e A281010 . 1, 1, 1; %e A281010 . 1, 0, 0, -1; %e A281010 . 1, 1, 0, 1, 1; %e A281010 . 1, 0, -1, 1, 0, -1; %e A281010 . 1, 1, 1, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, 0, 0, 0, -1; %e A281010 . 1, 1, 1, 0, 0, 0, 1, 1, 1; %e A281010 . 1, 0, 0, -1, 0, 0, 1, 0, 0, -1; %e A281010 . 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1; %e A281010 . 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, -1; %e A281010 . 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1; %e A281010 . 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1; %e A281010 . 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1; %e A281010 . 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1; %e A281010 ... %Y A281010 The sum of row 2n-1 is A000203(n). %Y A281010 The sum of row 2n is A000004(n) = 0. %Y A281010 The number of positive terms in row 2n is A001227(n). %Y A281010 The number of nonzero terms in row 2n is A054844(n). %Y A281010 Middle diagonal (or central column of the isosceles triangle) gives A067742. %Y A281010 Row 2n-1 is also the n-th row of A249351. %Y A281010 Row 2n is also the n-th row of A281011. %Y A281010 Row 2n-1 lists the partial sums of the terms, except the last term, of the row 2n. %Y A281010 Cf. A000005, A001227, A196020, A235048, A236104, A237048, A237591, A237593, A244050, A245092, A262626, A279387, A279388, A279391. %K A281010 sign,tabl %O A281010 1,61 %A A281010 _Omar E. Pol_, Jan 12 2017