This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281013 #13 Nov 15 2019 21:36:36 %S A281013 1,2,2,1,3,2,1,1,3,1,4,2,1,1,1,2,2,1,3,1,1,3,2,4,1,5,2,1,1,1,1,2,2,1, %T A281013 1,3,1,1,1,3,1,2,3,2,1,4,1,1,4,2,5,1,6,2,1,1,1,1,1,2,1,2,1,1,2,2,1,1, %U A281013 1,2,2,2,1,3,1,1,1,1,3,1,1,2,3,1,2,1,3,2,1,1,3,2,2,3,3,1,4,1,1,1,4,1,2,4,2,1,4,3,5,1,1,5,2,6,1,7 %N A281013 Tetrangle T(n,k,i) = i-th part of k-th prime composition of n. %C A281013 The *-product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling them together. Every finite positive integer sequence has a unique *-factorization using prime compositions P = {(1), (2), (21), (3), (211), ...}. See A060223 and A228369 for details. %C A281013 These are co-Lyndon compositions, ordered first by sum and then lexicographically. - _Gus Wiseman_, Nov 15 2019 %F A281013 Row lengths are A059966(n) = number of prime compositions of n. %e A281013 The prime factorization of (1, 1, 4, 2, 3, 1, 5, 5) is: (11423155) = (1)*(1)*(5)*(5)*(4231). The prime factorizations of the initial terms of A000002 are: %e A281013 (1) = (1) %e A281013 (12) = (1)*(2) %e A281013 (122) = (1)*(2)*(2) %e A281013 (1221) = (1)*(221) %e A281013 (12211) = (1)*(2211) %e A281013 (122112) = (1)*(2)*(2211) %e A281013 (1221121) = (1)*(221121) %e A281013 (12211212) = (1)*(2)*(221121) %e A281013 (122112122) = (1)*(2)*(2)*(221121) %e A281013 (1221121221) = (1)*(221)*(221121) %e A281013 (12211212212) = (1)*(2)*(221)*(221121) %e A281013 (122112122122) = (1)*(2)*(2)*(221)*(221121). %e A281013 Read as a sequence: %e A281013 (1), (2), (21), (3), (211), (31), (4), (2111), (221), (311), (32), (41), (5). %e A281013 Read as a triangle: %e A281013 (1) %e A281013 (2) %e A281013 (21), (3) %e A281013 (211), (31), (4) %e A281013 (2111), (221), (311), (32), (41), (5). %e A281013 Read as a sequence of triangles: %e A281013 1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 %e A281013 3 3 1 2 2 1 2 2 1 1 2 1 2 1 1 %e A281013 4 3 1 1 3 1 1 1 2 2 1 1 1 %e A281013 3 2 3 1 2 2 2 2 1 %e A281013 4 1 3 2 1 3 1 1 1 1 %e A281013 5 4 1 1 3 1 1 2 %e A281013 4 2 3 1 2 1 %e A281013 5 1 3 2 1 1 %e A281013 6 3 2 2 %e A281013 3 3 1 %e A281013 4 1 1 1 %e A281013 4 1 2 %e A281013 4 2 1 %e A281013 4 3 %e A281013 5 1 1 %e A281013 5 2 %e A281013 6 1 %e A281013 7. %t A281013 colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And]; %t A281013 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A281013 Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],colynQ],lexsort],{n,5}] (* _Gus Wiseman_, Nov 15 2019 *) %Y A281013 Cf. A000740, A215474, A228369, A277427. %Y A281013 The binary version is A329318. %Y A281013 The binary non-"co" version is A102659. %Y A281013 A sequence listing all Lyndon compositions is A294859. %Y A281013 Numbers whose binary expansion is co-Lyndon are A328596. %Y A281013 Numbers whose binary expansion is co-Lyndon are A275692. %Y A281013 Binary Lyndon words are A001037. %Y A281013 Lyndon compositions are A059966. %Y A281013 Normal Lyndon words are A060223. %Y A281013 Cf. A211097, A211100, A296372, A296373, A298941, A329131, A329312, A329313, A329314, A329324, A329326. %K A281013 nonn,tabf %O A281013 1,2 %A A281013 _Gus Wiseman_, Jan 12 2017