cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281013 Tetrangle T(n,k,i) = i-th part of k-th prime composition of n.

This page as a plain text file.
%I A281013 #13 Nov 15 2019 21:36:36
%S A281013 1,2,2,1,3,2,1,1,3,1,4,2,1,1,1,2,2,1,3,1,1,3,2,4,1,5,2,1,1,1,1,2,2,1,
%T A281013 1,3,1,1,1,3,1,2,3,2,1,4,1,1,4,2,5,1,6,2,1,1,1,1,1,2,1,2,1,1,2,2,1,1,
%U A281013 1,2,2,2,1,3,1,1,1,1,3,1,1,2,3,1,2,1,3,2,1,1,3,2,2,3,3,1,4,1,1,1,4,1,2,4,2,1,4,3,5,1,1,5,2,6,1,7
%N A281013 Tetrangle T(n,k,i) = i-th part of k-th prime composition of n.
%C A281013 The *-product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling them together. Every finite positive integer sequence has a unique *-factorization using prime compositions P = {(1), (2), (21), (3), (211), ...}. See A060223 and A228369 for details.
%C A281013 These are co-Lyndon compositions, ordered first by sum and then lexicographically. - _Gus Wiseman_, Nov 15 2019
%F A281013 Row lengths are A059966(n) = number of prime compositions of n.
%e A281013 The prime factorization of (1, 1, 4, 2, 3, 1, 5, 5) is: (11423155) = (1)*(1)*(5)*(5)*(4231). The prime factorizations of the initial terms of A000002 are:
%e A281013              (1) = (1)
%e A281013             (12) = (1)*(2)
%e A281013            (122) = (1)*(2)*(2)
%e A281013           (1221) = (1)*(221)
%e A281013          (12211) = (1)*(2211)
%e A281013         (122112) = (1)*(2)*(2211)
%e A281013        (1221121) = (1)*(221121)
%e A281013       (12211212) = (1)*(2)*(221121)
%e A281013      (122112122) = (1)*(2)*(2)*(221121)
%e A281013     (1221121221) = (1)*(221)*(221121)
%e A281013    (12211212212) = (1)*(2)*(221)*(221121)
%e A281013   (122112122122) = (1)*(2)*(2)*(221)*(221121).
%e A281013 Read as a sequence:
%e A281013 (1), (2), (21), (3), (211), (31), (4), (2111), (221), (311), (32), (41), (5).
%e A281013 Read as a triangle:
%e A281013 (1)
%e A281013 (2)
%e A281013 (21), (3)
%e A281013 (211), (31), (4)
%e A281013 (2111), (221), (311), (32), (41), (5).
%e A281013 Read as a sequence of triangles:
%e A281013 1    2    2 1    2 1 1    2 1 1 1    2 1 1 1 1    2 1 1 1 1 1
%e A281013           3      3 1      2 2 1      2 2 1 1      2 1 2 1 1
%e A281013                  4        3 1 1      3 1 1 1      2 2 1 1 1
%e A281013                           3 2        3 1 2        2 2 2 1
%e A281013                           4 1        3 2 1        3 1 1 1 1
%e A281013                           5          4 1 1        3 1 1 2
%e A281013                                      4 2          3 1 2 1
%e A281013                                      5 1          3 2 1 1
%e A281013                                      6            3 2 2
%e A281013                                                   3 3 1
%e A281013                                                   4 1 1 1
%e A281013                                                   4 1 2
%e A281013                                                   4 2 1
%e A281013                                                   4 3
%e A281013                                                   5 1 1
%e A281013                                                   5 2
%e A281013                                                   6 1
%e A281013                                                   7.
%t A281013 colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
%t A281013 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
%t A281013 Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],colynQ],lexsort],{n,5}] (* _Gus Wiseman_, Nov 15 2019 *)
%Y A281013 Cf. A000740, A215474, A228369, A277427.
%Y A281013 The binary version is A329318.
%Y A281013 The binary non-"co" version is A102659.
%Y A281013 A sequence listing all Lyndon compositions is A294859.
%Y A281013 Numbers whose binary expansion is co-Lyndon are A328596.
%Y A281013 Numbers whose binary expansion is co-Lyndon are A275692.
%Y A281013 Binary Lyndon words are A001037.
%Y A281013 Lyndon compositions are A059966.
%Y A281013 Normal Lyndon words are A060223.
%Y A281013 Cf. A211097, A211100, A296372, A296373, A298941, A329131, A329312, A329313, A329314, A329324, A329326.
%K A281013 nonn,tabf
%O A281013 1,2
%A A281013 _Gus Wiseman_, Jan 12 2017