This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281015 #15 May 01 2021 08:02:49 %S A281015 2,3,5,7,8,11,12,14,16,18,19,20,21,23,25,27,29,30,32,34,36,38,41,43, %T A281015 47,49,50,52,58,61,63,67,69,70,72,74,76,78,80,81,83,85,87,89,91,92,94, %U A281015 96,98,99,101,102,104,106,108,109,110,111,113,115,117,119,120,122,124,126 %N A281015 Numbers with a prime number of dots in their International Morse numeral representation. %C A281015 The Morse code is written in current ITU standard. %C A281015 Indices of primes in A280913. - _M. F. Hasler_, Jun 22 2020 %H A281015 Indranil Ghosh, <a href="/A281015/b281015.txt">Table of n, a(n) for n = 1..10000</a> %H A281015 Wikipedia, <a href="https://en.wikipedia.org/wiki/Morse_code">Morse Code</a> %e A281015 27 is in the sequence because 27 in its Morse numeral representation is written as '..--- --...' which has 5 dots and 5 is prime. %o A281015 (Python) # uses[A280913] %o A281015 from sympy import isprime %o A281015 i=0 %o A281015 j=1 %o A281015 while j<=100: %o A281015 if isprime(A280913(i)): %o A281015 print(str(j)+" "+str(i)) %o A281015 j+=1 %o A281015 i+=1 %o A281015 (PARI) select( {is_A281015(n)=isprime(A280913(n))}, [0..150]) \\ _M. F. Hasler_, Jun 22 2020 %Y A281015 Cf. A060109 (Morse code for n), A280913 (number of dots in Morse code for n). %Y A281015 Cf. A281017 (same for dashes), A281018 (intersection of the two). %Y A281015 Cf. A280998, A280999. %K A281015 nonn,base %O A281015 1,1 %A A281015 _Indranil Ghosh_, Jan 13 2017