cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281016 Numbers k such that k, phi(k) and cototient(k) are all perfect powers.

Original entry on oeis.org

8, 16, 32, 64, 125, 128, 256, 512, 1024, 2048, 3125, 4096, 4913, 8192, 16384, 32768, 50653, 65536, 78125, 131072, 262144, 524288, 1030301, 1048576, 1419857, 1953125, 2097152, 4194304, 7645373, 8388608, 16777216, 16974593, 33554432, 35831808, 48828125, 64481201, 67108864, 69343957
Offset: 1

Views

Author

Altug Alkan, Jan 13 2017

Keywords

Comments

This sequence does not contain only prime powers. Least term that has a prime factor which is not of the form m^2 + 1 is 35831808 = 2^14 * 3^7. The next one is 102503232 = 2^6 * 3^6 * 13^3. There are infinitely many such numbers.
Contains 2^a * 3^b whenever min(GCD(a,b), GCD(a,b-1), GCD(a+1,b-1)) > 1, e.g. if a == 14 (mod 42) and b == 7 (mod 42). - Robert Israel, Jul 08 2025

Examples

			125 = 5^3 is a term because phi(5^3) = 10^2 and cototient(5^3) = 5^2.
		

Crossrefs

Programs

  • Maple
    ispow:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(F[..,2]) > 1
    end proc:
    N:= 10^8: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    Cands:= {seq(seq(i^p, i = 2 .. floor(N^(1/p))),p = P)}:
    filter:= proc(n) local t; t:= numtheory:-phi(n); ispow(t) and ispow(n-t) end proc:
    sort(convert(select(filter, Cands),list)); # Robert Israel, Jul 08 2025
  • Mathematica
    Select[Range[10^6], Times @@ Boole@ Map[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1] &, {#, EulerPhi@ #, # - EulerPhi@ #}] > 0 &] (* Michael De Vlieger, Jan 14 2017 *)
  • PARI
    is(n) = ispower(eulerphi(n)) && ispower(n-eulerphi(n)) && ispower(n);