A281016 Numbers k such that k, phi(k) and cototient(k) are all perfect powers.
8, 16, 32, 64, 125, 128, 256, 512, 1024, 2048, 3125, 4096, 4913, 8192, 16384, 32768, 50653, 65536, 78125, 131072, 262144, 524288, 1030301, 1048576, 1419857, 1953125, 2097152, 4194304, 7645373, 8388608, 16777216, 16974593, 33554432, 35831808, 48828125, 64481201, 67108864, 69343957
Offset: 1
Keywords
Examples
125 = 5^3 is a term because phi(5^3) = 10^2 and cototient(5^3) = 5^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..547 (first 158 terms from Robert Israel, terms <= 10^20)
Programs
-
Maple
ispow:= proc(n) local F; F:= ifactors(n)[2]; igcd(F[..,2]) > 1 end proc: N:= 10^8: # for terms <= N P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]): Cands:= {seq(seq(i^p, i = 2 .. floor(N^(1/p))),p = P)}: filter:= proc(n) local t; t:= numtheory:-phi(n); ispow(t) and ispow(n-t) end proc: sort(convert(select(filter, Cands),list)); # Robert Israel, Jul 08 2025
-
Mathematica
Select[Range[10^6], Times @@ Boole@ Map[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1] &, {#, EulerPhi@ #, # - EulerPhi@ #}] > 0 &] (* Michael De Vlieger, Jan 14 2017 *)
-
PARI
is(n) = ispower(eulerphi(n)) && ispower(n-eulerphi(n)) && ispower(n);
Comments