This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A281020 #12 Feb 21 2025 16:44:28 %S A281020 0,1,4,6,8,12,13,15,19,21,31,47,51,67,70,74,76,78,87,91,100,104,106, %T A281020 108,111,127,137,140,144,146,148,157,160,164,166,168,172,173,175,177, %U A281020 179,180,184,186,188,197,202,203,205,207,209,217,220,224,226,228,230,234,236,238 %N A281020 Numbers with a prime number of raised dots in their Braille representation. %H A281020 Indranil Ghosh, <a href="/A281020/b281020.txt">Table of n, a(n) for n = 1..10000</a> %H A281020 Indranil Ghosh, <a href="/A281020/a281020_1.txt">Braille Numerals</a> %e A281020 67 is in the sequence. 67, as evident from the link uploaded above, has 11 raised dots ("o") in its Braille representation and 11 is prime. %o A281020 (Python) %o A281020 from sympy import isprime %o A281020 B=[3, 1, 2, 2, 3, 2, 3, 4, 3, 2] %o A281020 def a(n): %o A281020 s=0 %o A281020 for i in str(n): %o A281020 s+=B[int(i)] %o A281020 return s+4 %o A281020 i=0 %o A281020 j=1 %o A281020 while j<=10000: %o A281020 if isprime(a(i))==True : %o A281020 print(f"{j} {i}") %o A281020 j+=1 %o A281020 i+=1 %Y A281020 Cf. A072283, A281015, A281017. %K A281020 nonn,base %O A281020 1,3 %A A281020 _Indranil Ghosh_, Jan 13 2017