A281054 Number of nX6 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
6, 251, 1403, 5400, 16875, 46610, 119205, 288527, 671451, 1515524, 3339671, 7217269, 15347530, 32196671, 66765699, 137073842, 278977066, 563443975, 1130260537, 2253558987, 4468793135, 8818038639, 17322550753, 33890757331
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1..0..1. .0..1..0..1..0..1. .0..0..1..0..1..0. .0..1..0..1..0..1 ..0..1..0..1..0..0. .1..1..0..1..0..1. .1..0..1..0..1..0. .0..1..0..0..1..0 ..1..0..1..0..1..0. .0..1..0..1..0..1. .0..1..1..0..0..1. .0..1..1..0..0..1 ..1..0..1..0..0..1. .1..0..0..1..0..1. .0..0..1..1..0..0. .0..0..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A281056.
Formula
Empirical: a(n) = 3*a(n-1) +3*a(n-2) -11*a(n-3) -9*a(n-4) +15*a(n-5) +20*a(n-6) +3*a(n-7) -18*a(n-8) -27*a(n-9) -9*a(n-10) +15*a(n-11) +20*a(n-12) +12*a(n-13) -7*a(n-15) -6*a(n-16) -3*a(n-17) -a(n-18) for n>21
Comments