A281056 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 0, 1, 0, 1, 6, 6, 0, 2, 34, 68, 29, 0, 6, 104, 239, 376, 122, 0, 13, 251, 618, 1022, 1492, 468, 0, 29, 535, 1403, 2452, 3416, 4988, 1686, 0, 60, 1076, 2828, 5400, 7803, 10112, 15028, 5807, 0, 122, 2090, 5482, 10570, 16875, 22106, 27635, 42252, 19338, 0
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1 ..1..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1. .1..0..1..1 ..0..1..1..0. .0..1..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..1 ..0..0..1..1. .0..1..0..1. .0..1..0..0. .1..0..1..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..338
Crossrefs
Row 1 is A055243(n-4).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) -30*a(n-2) +45*a(n-3) -30*a(n-4) +9*a(n-5) -a(n-6)
k=3: a(n) = 5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4) for n>6
k=4: [order 12] for n>14
k=5: [order 13] for n>16
k=6: [order 18] for n>21
k=7: [order 19] for n>23
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 8] for n>14
n=3: [same order 8] for n>15
n=4: [order 9] for n>17
n=5: [same order 9] for n>18
n=6: [same order 9] for n>19
n=7: [same order 9] for n>20
Comments