cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281056 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 6, 6, 0, 2, 34, 68, 29, 0, 6, 104, 239, 376, 122, 0, 13, 251, 618, 1022, 1492, 468, 0, 29, 535, 1403, 2452, 3416, 4988, 1686, 0, 60, 1076, 2828, 5400, 7803, 10112, 15028, 5807, 0, 122, 2090, 5482, 10570, 16875, 22106, 27635, 42252, 19338, 0
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2017

Keywords

Comments

Table starts
.0.....0......0......1......2.......6......13......29......60......122......241
.0.....1......6.....34....104.....251.....535....1076....2090.....3956.....7353
.0.....6.....68....239....618....1403....2828....5482...10342....19136....34907
.0....29....376...1022...2452....5400...10570...19892...36616....66354...118926
.0...122...1492...3416...7803...16875...32370...59669..107693...191953...339219
.0...468...4988..10112..22106...46610...87995..159317..282552...495655...864369
.0..1686..15028..27635..58005..119205..221212..394884..689397..1191475..2050466
.0..5807..42252..71419.144283..288527..526340..926077.1596265..2721514..4625355
.0.19338.113076.177320.344972..671451.1201939.2084979.3549039..5982952.10051523
.0.62731.291660.426696.800225.1515524.2661939.4546633.7645715.12749511.21211441

Examples

			Some solutions for n=4 k=4
..0..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
..1..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1. .1..0..1..1
..0..1..1..0. .0..1..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..1
..0..0..1..1. .0..1..0..1. .0..1..0..0. .1..0..1..1. .1..0..1..0
		

Crossrefs

Row 1 is A055243(n-4).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) -30*a(n-2) +45*a(n-3) -30*a(n-4) +9*a(n-5) -a(n-6)
k=3: a(n) = 5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4) for n>6
k=4: [order 12] for n>14
k=5: [order 13] for n>16
k=6: [order 18] for n>21
k=7: [order 19] for n>23
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 8] for n>14
n=3: [same order 8] for n>15
n=4: [order 9] for n>17
n=5: [same order 9] for n>18
n=6: [same order 9] for n>19
n=7: [same order 9] for n>20