A281057 Number of 2 X n 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 1, 6, 34, 104, 251, 535, 1076, 2090, 3956, 7353, 13474, 24417, 43846, 78142, 138374, 243687, 427098, 745403, 1296072, 2246018, 3880504, 6686165, 11491746, 19706373, 33722458, 57596214, 98195818, 167136611, 284039674, 482013727, 816869276
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..1. .0..1..1..1. .0..1..1..0. .0..0..1..1. .0..1..0..0 ..0..1..1..0. .0..0..1..0. .0..0..0..0. .1..1..0..1. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A281056.
Formula
Empirical: a(n) = 5*a(n-1) - 7*a(n-2) - 2*a(n-3) + 10*a(n-4) - 2*a(n-5) - 5*a(n-6) + a(n-7) + a(n-8) for n>14.
Empirical g.f.: x^2*(1 + x + 11*x^2 - 22*x^3 - 29*x^4 + 18*x^5 + 43*x^6 + 14*x^7 - 31*x^8 - 13*x^9 + 8*x^10 + 2*x^11 - x^12) / ((1 - x)^2*(1 - x - x^2)^3). - Colin Barker, Feb 15 2019