A281061 Number of 6Xn 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 468, 4988, 10112, 22106, 46610, 87995, 159317, 282552, 495655, 864369, 1501627, 2601791, 4498333, 7762266, 13369326, 22983871, 39440039, 67556367, 115513187, 197179026, 336035590, 571793109, 971529387, 1648428839, 2793279473
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..1 ..0..1..0..0. .1..0..1..0. .1..1..0..1. .0..1..0..1. .1..0..0..1 ..0..1..1..0. .1..0..1..1. .0..1..0..1. .0..1..0..1. .1..1..0..0 ..0..0..0..1. .1..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..1..1 ..1..1..0..0. .0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1 ..0..1..1..0. .0..1..0..0. .0..1..1..0. .0..1..0..0. .0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A281056.
Formula
Empirical: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>19
Comments